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1 Organization

• Lecture with script: http://comphys.unibas.ch/teaching.htm

• Exercises and projects

– ’Small’ exercises accompanying each lecture: Traditional analytic problems

and simple numerical problems (on your own laptop?)

– Solve 2 ’large’ projects out of 6 being offered

Development of a short program to solve a simple physical problem. Can

be done at any time by the student either at home or in the physics institute.

Programming help can be given to Fortran Programmers and to some extent

to C programmers.
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Credit points:

• 4 credit points for doing the small exercises and passing an oral examination on the

course

• 2 additional credit points for the successful solution of the 2 projects.
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Outline of the course

• Linux operating system

http://www.linux.org/

• vi editor

http://www.selflinux.org/selflinux/html/vim.html

• Fortran programming tutorial

• Computer arithmetic

• Numerical differentiation

• Minimization algorithms

• Atomistic simulations and Molecular dynamics (MD)

– Inter-atomic potentials

– Structure determination
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– Vibrational properties

– Basic Molecular Dynamics algorithms

– Boundary conditions

• Electrostatic and gravitational forces

– Barnes Hut algorithm

– Fast multipole algorithm

– Fourier methods

– Ewald and particle mesh methods

– Multigrid methods

• Statistical mechanics

– Random numbers

– Calculations of thermodynamic properties from MD simulations

– Monte Carlo simulations

– Global minimization and structure prediction

• Quantum mechanics

0-9



– Numerical solution of the time-independent single particle Schrödinger equa-

tion

– Density functional methods

• Numerical integration methods

– One-dimensional integrals

– High-dimensional integrals

2 Motivating the use of computers in physics

2.1 Computers are changing our daily life

• email

• Internet

• (on-line) data banks

• tele-working

• electronic control systems in cars: ABS, ESP
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2.2 Computers are changing the way science is done

”Old” science

THEORY EXPERIMENT

MATHEMATICS

”New” science

THEORY EXPERIMENT

SIMULATION

MATHEMATICS

NUM. MATHEMATICS

COMPUTER SCIENCE
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2.3 100-fache Zunahme der CPU hours für wissenschaftliche Simu-

lationen am CSCS pro Decade
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2.4 Ingredients of the virtual chemistry/physics laboratory

• Models of the physical reality, e.g. density functional theory for the description of

interacting electronic systems or elasticity theory for the description of macroscopic

bodies

• Algorithms that allow us to solve the fundamental equations of these models nu-

merically

• Fast computers

• Efficient implementations of the algorithms on modern computers
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2.5 Scaling behavior of algorithms

TCPU = cNγ (1)

N is some measure of the size of the system to be simulated

• γ large: High complexity algorithm, bad scaling

• γ small: Low complexity algorithm, favorable scaling

Ultimate goal: linear scaling, TCPU = cN

Crossover point

TCPU

N

In the presence of very powerful computers, bad scaling is the most serious limitation in

numerical simulations
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2.6 Fast algorithms are among the main achievements of modern

mathematics

• Fast Fourier Transform: Frequency analysis with O( N log(N) ) operations;

N = number of data points

• Multi-grid method: Solution of elliptic PDE’s with O(N) operations;

N = the number of grid points

• Fast Wavelet transformation: Multi-resolution analysis with O(N) operations ;

N = number of data points

• Merge Sort: Sorting N data items with O( N log(N) ) operations
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2.7 Two sorting algorithms

Ordinary Sorting :

The subroutine below sorts an array A into ascending order:

A(1) ≤ A(2) ≤ ... ≤ A(N-1) ≤ A(N)

SUBROUTINE slowsort(N,ARR)

DIMENSION ARR(N)

DO J=2,N

A=ARR(J)

DO I=J-1,1,-1

IF(ARR(I) <= A) GOTO 10

ARR(I+1)=ARR(I)

ENDDO

I=0

10 ARR(I+1)=A

ENDDO

END

The scaling is quadratic: TCPU ∝ N2
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Merge Sort: TCPU ∝ N log2(N)

2

4

3

1

1. Any consecutive pair of entries is ordered

2. All consecutive pairs of ordered segments of length 2 are merged into ordered seg-

ments of length 4

3. All consecutive pairs of ordered segments of length 4 are merged into ordered seg-

ments of length 8

4. The remaining two ordered segments of length 8 are merged into the final ordered

result

Exercise [5pt]: Write a subroutine that implements the merge sort algorithm
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PROJECT: Sorting continously growing data sets

Background

The merge sort algorithm allows to sort a given data set in an efficient way. Frequently

the data set is however not constant in time, but increasing continously. For instance

new participants have to be added continously in an alphabetically ordered telephon book.

Using the merge sort repeatedly after adding one or a few new items to the data set would

be inefficient. In this project a method will be introduced, which allows us to maintain

continously growing data sets with moderate effort.

We consider a large one dimensional array (a) of numbers which are stored in increasing

order, that is a(n) > a(n− 1) > ...a(3) > a(2) > a(1) . Here n is the length of the array

and is in the order of 100k. For simplicity we can assume that the numbers are in the

interval [0:1] which means that they can be generated by a simple call to a random number

generator (call random number(r) in Fortran). Now we want to insert an element (which

is a random number) into this array. According to the value of this new element, it has to

inserted in the kth position. This position can be found efficiently with at most O(log(n))
operations using bisection. Then we have to increase the length of our final array to n+1

and shift all elements of the old array having the positions ≥ k. This operation becomes

very expensive when n is very large because memory access is typically more expensive

on modern computers than numerical operations. We will try to find a different way to do

this operation more efficiently.
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Tasks

• Write a bisection routine that will find in an ordered array the correct position for

inserting a new element. Take as the first search interval the whole array. In each

consecutive step the length of interval which contains the correct position is cut into

half until the insert position is found.

• We will now convert the large one dimensional data array a(n) into which data have

to be inserted to a two dimensional array b(m, l) as shown in Figure below, where

the shaded region represents non zero values of the array The value of m and l has

to be chosen such that m× l > n , that is, we will have space for more elements in

this two dimensional array than in our original one dimensional array.
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Here are the steps to be taken

1. Choose the number of columns(m) and rows(l) of the two dimensional array.

2. Store the elements in two dimensional array such that each column contains

same number of elements. While storing the elements also store the number

of elements in column i in an array ncolelements(i) and also the maximum

value of the element in valindex(i).

3. Now if we want to insert an element in our original array we will first find out

in which column it belongs to using the value stored in valindex(:).

4. Once we know to which column it belongs we will insert it into that column

at the right array position so that the increasing order in preserved. In addition

we also update the array ncolelements(:) containing the number of elements

in each column and possibly also valindex(i). In the figure below, the shaded

region represents old values of the array and red are the new inserted values
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5. If one column gets filled up in this process, then go to the first step and redis-

tribute again.

• Test the method carefully. Write a routine which reconverts the two dimensional

array into an one dimensional array and check whether the one dimensional data

are correctly ordered at any stage of the continous insertion process.

• Compare the performance of this more sophisticated algorithm with the perfor-

mance of the trivial method where the insert position is found in a one-dimensional

array by bisection and then all the elements beyond the insertion point are shifted.

Examine the influence of the size of the data set and of the choice of the side lengths

of the two dimensional array on the performance.
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2.8 Computational Physics and theory

The basic equations of physics are in general too complicated to be solved by analytical

methods. In many cases they can however be solved by numerical methods. Examples:

• Newton’s equations of motion can be solved analytically for a system of at most

two spherical bodies. No analytic solution is available if one wants to describe for

instance the entire solar system with the sun and all its planets. Numerically this

can however easily be done.

• The only system found in nature for which the Schrödinger equation can be solved

is the hydrogen atom. If one wants to solve this equation even for the simplest

molecule, one has to use numerical methods.

• The electrostatic potential can be calculated analytically for simple charge distribu-

tions such as point charges, charged lines etc as every student knows from numerous

exercises of this type. For realistic and more complicated charge distributions, such

as the charge distributions found in a semiconductor device one has again to resort

to numerical methods.

• Simulation based on physical laws is also an essential ingredient in engineering. To

obtain a stable and save body of a car, computer simulations are just as essential as

for the design of the wing of an airplane.
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2.9 Computational Physics and experiment

Experiments have several limitations

• Experimental results are usually not the findings of direct observations but of in-

terpreted observations. These assumptions on which the interpretations were based

may be wrong or inaccurate. In computer simulations on the contrary, most quanti-

ties are directly accessible. One can for instance exactly know the atomic positions

of the atoms in a chemical reaction when it is studied with a molecular dynamics

simulation.

• Simulations can be done for systems under extreme conditions (e.g. very high tem-

perature or very high pressure) that can not be handled by any experimental equip-

ment.

• If an answer to a physical problem can both be obtained by simulation and by ex-

periment, simulation is frequently cheaper.
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2.10 Modern Computers

Typical performance figures for a single node:

• A few Gigaflops/sec of peak performance

Example: a single core has a peak of around 12 Gflops/sec : Clocked at 3 GHz, 4

floating point operations per cycle

• several cores/processor

• multi-processors

• A few Gigabyte of memory (one double precision number = 8 byte = 64 bit)

Parallel computers

• Distributed memory computers: Up to a few thousand processors (frequently with

GPU accelerator) connected by a fast network. Programming on such a machine is

very different from the programming of a serial machine since one has to tell each

processor individually what to do.

Increased parallelism is the driving force for further performance gains: Swiss National

Supercomputer: 25 Peta flops = 25*1015 floating point operations per second
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2.11 How are computers used in science

• Number crunching: Numerical calculations using floating point numbers

• Symbolic computer algebra (Mathematica, Maple)

• Data banks (scientific journals and data)

• Electronic communication (email, downloading of programs over the Internet, etc)
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Numerical calculations are frequently done on grids

function f (x,y) on a two-dimensional grid: functional values on grid points are stored in

an array
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Is the performance of modern computers sufficient
Taking into account the impressive speed of modern computers, one might think that

enough performance is available to solve any computational problem in little time. This is

actually not true. There are numerous important problems that would require a computer

speed that is several orders of magnitude larger than what we have nowadays. To see

how the present computational power can easily be used up, let us consider some typical

computational problem. We want to follow the time evolution of a three-dimensional

system over a certain time period. The time dependent solution of the three-dimensional

system will be specified on a numerical grid with let’s say at least 100 grid points along

each direction. There are thus 106 real space grid points. Let us assume that we need 1000

time steps. Hence 109 values need to be computed during the simulation. Assuming that

the algorithm has linear scaling and that the calculation of each value requires 100 floating

point operations we will need 1011 operations to perform the simulation. This would take

roughly 10 seconds on a single core of a modern workstation. However our assumptions

are highly optimistic. In most cases the scaling will not be linear and prefactors can be

much larger. Hence there are numerous problems that can not even be solved on large

parallel computers nowadays.
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3 Computer arithmetic

Traditional mathematics distinguishes between integers, rational and irrational numbers.

Computer arithmetic is very different. It does not have rational and irrational numbers.

Both are approximated by floating point numbers. And even though computer arithmetic

has integers, they have different properties than the integers known from traditional math-

ematics. These differences are due to the fact that all kinds of numbers have a binary

representation on a computer, i.e they are represented by a finite length sequence of bits.

A bit can take on the values of 0 and 1.

3.1 Binary representation of integers

Typically integers are stored using a 32-bit word. The most obvious way would be to use

one bit for the sign and the remaining 31 bits for the absolute value. The standard integer

representation is however a different one. It is called signed integers via 2’s complement.

In this convention a nonnegative integer k in the range 0 ≤ k ≤ 231− 1 is stored as the

binary representation of k, but a negative integer −l, where 1 ≤ l ≤ 231, is stored as the

binary representation of the positive integer 232− l.

Examples

(00000000 00000000 00000000 00000000)2 = 0
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(00000000 00000000 00000000 00000001)2 = 1

(00000000 00000000 00000000 00000010)2 = 2

(00000000 00000000 00000000 00000011)2 = 3

(00000000 00000000 00000000 00000100)2 = 4

(00000000 00000000 00000000 00000101)2 = 5

(00000000 00000000 00000000 01000111)2 = 71

(11111111 11111111 11111111 10111001)2 = −71

(01111111 11111111 11111111 11111111)2 = 231−1

(10000000 00000000 00000000 00000000)2 = −231

It can easily be verified that the representations of 71 and -71 add up to zero

(00000000 00000000 00000000 01000111)2

+(11111111 11111111 11111111 10111001)2

= (1 00000000 00000000 00000000 00000000)2

since the leftmost bit, called the overflow bit, is discarded.

The basic operations with integers are additions/subtractions and multiplications. Since

the result is again an integer it does have a binary machine representation unless it is
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too big in absolute value to be represented by the available 32 bits. Such an event is

called an overflow. Modern computers, that respect the IEEE (Institute of Electric and

Electronic Engineers) standard, do not print an error message upon overflow, unless the

progrtam is compiled with special flags. Instead they will assign a wrong integer result to

the operation. The programmer has thus to ensure that no overflow will occur. Divisions

are also allowed between integers. If the result is a representable integer, such a division

will deliver the expected result. If the result is not an integer, the resulting rational number

will be rounded to the integer part if the result is positive and to minus the integer part of

the absolute value if the result is negative. This rounding is also called rounding towards

zero. An useful intrinsic function that is acting on integers is the modulus function.

Exercise [1pt]: Can one determine the sign of a machine integer by looking only at the

first bit, even though this first bit does not have the meaning of a sign bit?

Declaration and use of integers in Fortran
Since the two types of numbers available on a computer, integers and floating point num-

bers, behave very differently, the programmer has to declare to which type each variable

belongs. A sample program is shown below.
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program integers

implicit none

integer(4) :: i1,i2,i3,k

integer(4) :: ia(4),ib(4)

i1=8-2 ; i2=3*5 ; i3=3**3

write(*,*) ’i1,i2,i3=’,i1,i2,i3

i1=8/2 ; i2=12/3

write(*,*) ’i1,i2=’,i1,i2

i1=modulo(10,3) ; i2=modulo(-10,3)

write(*,*) ’i1,i2=’,i1,i2

do k=1,4

ia(k)=2/k ; ib(k)=-2/k

enddo

write(*,’(a,4(x,i3))’)’ia=’,ia

write(*,’(a,4(x,i3))’)’ib=’,ib

end program

Exercise [1pt]: Copy the above program, compile it, run it and explain the results.

Exercise [1pt]: Calculate ii = 231− 1 as the sum ii = ∑30
k=0 2k. Then add 1,2,3 to ii and

print out the result. Explain the surprising result.
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3.2 Floating point numbers

Floating point representation is based on scientific (exponential) notation. In base 10 a

real number x is written as

x =±S×10E (2)

S is called the significand and the integer E the exponent. For computer arithmetic base 2

is used instead of base ten and hence

x =±S×2E , where 1≤ S < 2 (3)

The binary expansion of the significand is

S = (b0.b1b2b3...bp−1)2 , with b0 = 1 (4)

A floating point number for which b0 = 1 is called a normalized number. For normal-

ized numbers, it is not necessary to store the first bit b0. For instance the number 5.5 is

represented as

5.5 =
11

2
= (1.011)2×22 (5)

A real number such as 1/3 or
√

2 can not be represented exactly by an expansion of the

significand of finite length p.
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For scientific computations double precision numbers are a de facto standard, since ordi-

nary single precision does not give sufficient precision. The IEEE double precision stan-

dard specifies 1 bit for the sign, 11 bits for the exponent and 52 bits for the significand. The

total storage requirement is thus 64 bits which equals 8 bytes. Out of the 11 bits for the ex-

ponent, one is lost for the sign and the largest exponent is thus 210−1 = 1023. The largest

normalized floating point number is thus approximately 21024 ≈ 1.8×10308. For technical

reasons the smallest possible exponent is not −1023, but −1022 which gives the smallest

normalized floating point number of 2−1022 ≈ 2.2×10−308. By allowing non-normalized

floating point numbers for the smallest possible exponent it is actually possible to repre-

sent even smaller floating point numbers down to 2−10222−52 = 2−1074 ≈ 4.9×10−324. If

a result of a floating point operation produces a result outside the range of the smallest and

largest floating point number a floating point exception occurs. For a result that becomes

too large in magnitude, the IEEE standard has introduced the notation plus or minus ’In-

finity’. If it gets too small in magnitude it is set to zero. A floating point exception also

occurs if one executes a mathematically forbidden operation, such as diving by zero or

taking the square root of a negative number. According to the IEEE standard such a re-

sult should be denoted by ’NaN’, which stands for ’Not a Number’. Unfortunately many

computer manufacturers do not observe the IEEE floating point exception standards.

0-33



Declaration and use of floating point numbers in Fortran

program floating_point

implicit none

integer :: i

real(8) :: x,y

open(unit=1,file=’large’) ; open(unit=2,file=’small’)

x=1/5 ; y=1.d0/5.d0

write(*,*) x,y

x=1.d0/0.d0 ; y=sqrt(-1.d0)

write(*,*) x,y

x=2.d0**1020

do i=1,20

x=x*2.d0 ; write(1,*) x

enddo

x=2.d0**(-1060)

do i=1,20

x=x/2.d0 ; write(2,*) x

enddo

close(1) ; close(2)

end program
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3.3 Rounding

Unless overflow occurs, the sum or the product of two machine integers is again a machine

integer. This does not hold true for floating point numbers. Their sum or product will in

general require more than the number of bits used to represent the two input numbers.

Hence any floating point operation has to be followed by a rounding operation. For this

reason floating point arithmetic is never exact arithmetic. Floating point numbers have

the property that the distance between two neighboring numbers is approximately propor-

tional to their magnitude. Hence rounding to the closest floating point number introduces

a relative error that is roughly constant. The gap between a floating point number x and

the next larger floating point number that is larger in magnitude is called ul p(x), where

ulp stands for Unit in the Last Place. ul p(1) is called the machine epsilon. The machine

epsilon thus gives the smallest number that will produce a result different from 1 when

added to 1.

To visualize the properties of the floating point number system, let us introduce a toy float-

ing point number system, where the significand has only 3 bits and where the exponent

can take on only the values -1,0,1. We will assume normalized numbers such that b0 = 1.

±(b0.b1b2)2×2E (6)
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For E = 1 the possible floating point numbers are

(10.0)2 = 2 ; (10.1)2 = 2.5 ; (11.0)2 = 3 ; (11.1)2 = 3.5

for E = 0 they are

(1.00)2 = 1 ; (1.01)2 = 1.25 ; (1.10)2 = 1.5 ; (1.11)2 = 1.75

and for E =−1 they are

(.100)2 = .5 ; (.101)2 = .625 ; (.110)2 = .75 ; (.111)2 = .875

In addition there is the unnormalized floating point number zero (0.00)2

 0  0.5  1  1.5  2  2.5  3  3.5  4
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For the toy system it is easy to see that ul p(1.) = 1/4. For a general binary floating point

number ul p(1.) =
(

1
2

)p−1
where p is defined in Eq. 4. The distance between the first

floating point number below 1. and 1. is 1/8. In the general case it is
(

1
2

)p
. It follows that

the fractional error
ulp(x)
|x| introduced by rounding is in the interval

(
1

2

)p

≤ ul p(x)

|x| ≤
(

1

2

)p−1

(7)

For the IEEE double precision floating point system where p = 53 we thus get

1.1×10−16 ≤ ul p(x)

|x| ≤ 2.2×10−16 (8)

We can thus expect that due to rounding a single floating point operation will give a result

with an accuracy of nearly 16 decimal places. Since one is doing typically millions of

floating point operations the error between the exact arithmetic result and the floating point

arithmetic result can grow larger, but for a stable problem it should not grow dramatically.

Empirically it turns out that in stable large scale calculations one can expect an accuracy

of 11 to 13 digits.

Because of the rounding error it does usually not make sense to print out the results

of floating point operations with more than 15 digits. There is however one exception,
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namely if one wants to restart a program with exactly the same values that the program

used when it stopped. In this case we have to make sure that a conversion from binary

to decimal and back returns the original binary floating point number. The requirement

is that the decimal floating point system has to be at any point at least two times denser

than the original binary floating point system. The best resolution we can expect from the

IEEE double precision standard is 1
2

53
. Hence we have the condition that

(
1

10

)q

<
1

2

(
1

2

)53

(9)

where q is the number of decimal places in the decimal system. The smallest integer

value of q satisfying this condition is q = 17. What can go wrong if we do not double the

resolution is shown in the figure below. So we have to write all numbers with 17 decimal

places into a restart file if we want to be sure that we get back our initial binary floating

point number.

Base 2

Base 10
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3.4 Cancellation

Relative precision is lost in floating point arithmetic when two numbers are subtracted.

This loss is worst if the two numbers to be subtracted are similar in magnitude. The

phenomenon of cancellation is not only found in binary floating point numbers but also

in decimal floating point numbers. Since we are more familiar with the decimal system,

cancellation will be demonstrated for a decimal system with 8 decimal places. This means

that we have an relative error of 10−9. Let us now assume that we want to subtract the two

floating point numbers x and y where

x = 0.12345678

y = 0.12345578

The result is obviously z= x−y= 0.00000100= .1e−5. Even though z is again a floating

number with a potential relative accuracy of 10−9 it has in reality a much lower accuracy,

namely a relative accuracy of 10−4. In order to get z with 8 significant decimal places,

it would be necessary to have a representation of x and y with 13 decimal places. For

instance with

x = 0.1234567800009

y = 0.1234557800000

we obtain z = 0.0000010000009 = .10000009.e−5
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Catastrophic Cancellation
Various instances can be encountered where floating point arithmetic gives wrong results.

An experienced programmer can usually detect such problems and eliminate them. As an

example let us look at the expression

√
1.d0− x−1.d0 (10)

and let us assume that x is very small, i.e. x = 1.d− 20. Since x is smaller than the

machine epsilon 1.d0− x will be equal to 1.d0 and
√

1.d0− x−1.d0 = 0. The true result

is approximately −.5d− 20 which can easily be represented by a floating point number.

We have thus a relative error in our result that is of the order of one. In this case the

problem can be avoided by multiplying numerator and denominator by
√

1.d0− x+1.d0

√
1.d0− x−1.d0 =

(
√

1.d0− x−1.d0)(
√

1.d0− x+1.d0)√
1.d0− x+1.d0

=
−x√

1.d0− x+1.d0
(11)

Exercise [1pt]: Calculate
√

1.d0− x−1.d0 for x = 1.d−2,1.d−4,1.d−6,1.d−8,1.d−
10,1.d− 12,1.d− 14,1.d− 16,1.d− 18 in both ways and compare the results. Which

result is more reliable?
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Exercise [1pt]: Can it be taken for granted that in floating point arithmetic

•
(x+ y)− x = y

•
1.d0/(1.d0/y) = y

Hint: Consider the toy system with x = .875, 1/.875 = 1.14286, 1/1.25 = .8

•
(y/x)∗ x = y

Hint: Consider the toy system with x = 1.5, y= 1.75, 1.75/1.5 = 1.166667, 1.25*1.5

= 1.875

•
x∗ (y+ z) = x∗ y+ x∗ z

In order to transfer the results of the toy system to real floating point arithmetic, write

a computer program. To make sure that the results of any operation are rounded before

they are used for the next operation, write intermediate results into variables and compile

without any optimization.
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Mixed arithmetic with integers and floating point numbers

If an arithmetic operation involves both a floating point number and an integer the integer

is first converted into a floating point number. This is done automatically by the compiler,

but the programmer can also explicitly require this transformation with the ’float’ intrinsic

function. Thus we get the identical result for all the six different ways of calculating .2

shown below.

x1=1.d0/5

x2=1/5.d0

x3=1.d0/5.d0

x4=1/float(5)

x5=float(1)/5

x6=float(1)/float(5)
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4 Numerical differentiation

In mathematics the first derivative of a function f (x) is defined as

f ′(x) = lim
h→0

f (x+h)− f (x)

h
≈ f (x+h)− f (x)

h
+O(h) (12)

and the second derivative as

f ′′(x) = lim
h→0

f (x+h)−2 f (x)+ f (x−h)

h2
=

f (x+h)−2 f (x)+ f (x−h)

h2
+O(h2) (13)

The formulas tell us that if we want to have an accurate result we have to choose h suffi-

ciently small. For example if we want to calculate both derivatives with 10 decimal places

h should be of order of 1.d-10 for the first derivative and of the order of 1.d-5 for the sec-

ond derivative. Unfortunately this accuracy can not be obtained numerically because of

catastrophic cancellation effects. The error of both derivatives of the exponential function

evaluated at x = 1.d0 as a function of h is shown below
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Using the above derivative formulas it is not possible to calculate derivatives with high

accuracy. If higher accuracy is required one has to use derivative formulas with a much

higher accuracy which is of the order of O(h16). In this way one should obtain for a

h≈ 1.d−1 an accuracy of 1.d-16, i.e. machine precision. Due to cancellation effects we

will perhaps loose one digit and end up with a numerical accuracy of 1.d-15
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Derivation of finite difference formulas for derivatives
Finite difference formulas that approximate derivatives of continuous and differentiable

functions are based on the fact that such a function can locally be approximated with

arbitrary accuracy by a polynomial. Let us first rederive Equations 12 and 13.

(X Y )

(X 0 , Y 0 )
(X 1, Y1 )

−1

h h

,−1

For Eqn. 12 we find a linear function that goes through the points (x0,y0) and (x1 =
x0 +h,y1). It is easy to see that this polynomial is given by

p1(x) = y0
x1− x

h
+ y1

x− x0

h
(14)

The derivative of this polynomial is given by

p′1(x) =−y0
1

h
+ y1

1

h
=

y1− y0

h
= y0
−1

h
+ y1

1

h
(15)
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which is identical to Eq. 12. A polynomial that goes through the points (x−1,y−1),(x0,y0)
and (x1,y1) is given by

p2(x) = y−1
(x0− x)(x1− x)

2h2
+ y0

(x1− x)(x− x−1)

h2
+ y1

(x− x0)(x− x−1)

2h2
(16)

The first and second derivative of the polynomial evaluated at x = x0 is given by

p′2(x0) =
y1− y−1

2h
= y−1

−1

2h
+ y1

1

2h
(17)

p′′2(x0) = y−1
1

h2
+ y0
−2

h2
+ y1

1

h2
(18)

The above equation is identical to Eq. 13. The principle for constructing higher order finite

difference formulas is simple. One has to fit higher order polynomials to the function f for

which one wants to calculate the derivative and then calculate analytically the derivative

for this polynomial. For even degree polynomials the resulting finite difference formula

will be a weighted sum of m functional values to the right and m functional values to the

left of the point x0 at which one wants to calculate the l-th derivative.

f (l)(x0)≈ p
(l)
2m(x0) =

m

∑
i=−m

yi

ci

hl
(19)
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where we have suppressed in our notation the fact that the set of coefficients ci differs for

different l.

The problem is that it is very cumbersome to derive by hand the coefficients ci in Eq. 19

for large m or l. Here symbolic computation can come to our help. The following Mathe-

matica program finds the 16-th degree polynomial p16(x) that goes through 17 points of a

function, differentiates it and evaluates it at x0:

f[x_]:=Evaluate[InterpolatingPolynomial[{{-8,ym8},{-7,ym7},{-6,ym6},

{-5,ym5},{-4,ym4},{-3,ym3},{-2,ym2},{-1,ym1},{0,y0},{1,yp1},

{2,yp2},{3,yp3},{4,yp4},{5,yp5},{6,yp6},{7,yp7},{8,yp8}},x]]

ff=Simplify[ReplaceAll[D[f[x],x],{x -> 0}]]

The output one obtains is the following:

Out[4]= (-640640 ym1 + 224224 ym2 - 81536 ym3 + 25480 ym4 - 6272 ym5 +

> 1120 ym6 - 128 ym7 + 7 ym8 + 640640 yp1 - 224224 yp2 + 81536 yp3 -

> 25480 yp4 + 6272 yp5 - 1120 yp6 + 128 yp7 - 7 yp8) / 720720

Lets now come back to our old problem of calculating numerically the derivative of the

exponential function with very large precision at x = 1.d0. Using the finite difference
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formula Eq. 19 with the above coefficients ci calculated with Mathematica, one can indeed

calculate the derivative with 15 correct decimals for h≈ 1.d−1.

Exercise [2pt]: Write a short computer program to calculate the first derivative of the

exponential function with high accuracy using the coefficients ci given by Mathematica.

Using an analysis based on Taylor expansions we get the finally the following formulas

for the error:

| f (l)(x0)− p
(l)
2m(x0)|<

{
const h2m−l+1 if l is odd

const h2m−l+2 if l is even
(20)

The plot on the next page numerically demonstrates the above error formula for the case

where m = 2.
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Table 1: The coefficients ci for calculating first and second derivatives for different values

of m according to Eq. 19. The coefficients for negative i follow from the symmetry c−i =
−ci for the first and c−i = ci for the second derivative.

m c0 c1 c2 c3 c4 c5 c6 c7 c8

1 0 1/2

2 0 2/3 -1/12

3 0 3/4 -3/20 1/60

4 0 4/5 -1/5 4/105 -1/280

5 0 5/6 -5/21 5/84 -5/504 1/1260

6 0 6/7 -15/56 5/63 -1/56 1/385 -1/5544

7 0 7/8 -7/24 7/72 -7/264 7/1320 -7/10296 1/24024

8 0 8/9 -14/45 56/495 -7/198 56/6435 -2/1287 8/45045 -1/102960

1 -2 1

2 -5/2 4/3 -1/12

3 -49/18 3/2 -3/20 1/90

4 -205/72 8/5 -1/5 8/315 -1/560

5 -5269/1800 5/3 -5/21 5/126 -5/1008 1/3150

6 -5369/1800 12/7 -15/56 10/189 -1/112 2/1925 -1/16632

7 -266681/88200 7/4 -7/24 7/108 -7/528 7/3300 -7/30888 1/84084

8 -1077749/352800 16/9 -14/45 112/1485 -7/396 112/32175 -2/3861 16/315315 -1/411840

0-50



This figure shows the error for all the 8 sets of differentiation coefficients for the first

derivative in the table on the previous page. The lowest order formula (red plus sign) has

the smallest slope, whereas the highest order formulas with m=7 (black points) m=8 (red

triangels) have the largest slope and allow us to reach 1.e-15, which is close to machine

precision.
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Exercise [2pt]: Prove the statement about the symmetry properties of the differentiation

coefficients, i.e show that c−i = (−1)lci for the lth derivative.

Hint: Without restriction, we can consider the origin as the point x0 where the derivative

has to be calculated. Use the fact that

∂l

∂xl
f (−x)

∣∣∣∣
x=0

= (−1)l ∂l

∂xl
f (x)

∣∣∣∣
x=0

(21)

Consider f to be a polynomial of low enough degree, such that it can exactly be differen-

tiated with the coefficients ci.
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Partial derivatives of functions depending on several variables
The coefficients of finite difference formulas for mixed partial derivatives can easily be

obtained from the one-dimensional coefficients. Let us consider as an example the mixed

derivative
∂2 f
∂x ∂y

of a function f (x,y). We obtain

∂2 f

∂x ∂y
=

∂

∂y

∂ f

∂x

≈ ∂

∂y
∑

i

f (x+ ih,y)
ci

h

= ∑
i

ci

h

∂

∂y
f (x+ ih,y)

≈ ∑
i

ci

h
∑

j

f (x+ ih,y+ jh)
c j

h

= ∑
i

∑
j

f (x+ ih,y+ jh)
cic j

h2

where the coefficients ci belong to some set of Table 1.
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5 Minimization Methods

5.1 Minimizing a continuous 1-dim function

Minimizing a smooth function is considerably easier than minimizing a non-smooth or

even discontinuous function. If the first derivative exists, its sign tells us whether we have

to move to the right or to the left to come closer to the minimum. The so-called steepest

descent iteration

xl+1 = xl−α f ′(xl) (22)

will therefore converge to the minimum f (xM) of the function f if the step size α is

sufficiently small. If α is too large the iteration will diverge.

x x x xl ll+1l+1

f’(x  ) > 0

l

l

f(x)f(x)
f’(x  ) < 0

l
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Next, we will discuss the case where the second derivative exists as well. Using in a

combined way the information on the first and second derivative gives the most efficient

minimization algorithms. The information about even higher derivatives is typically not

used since this would be too complicated. Consequently we can assume in our discussion

of minimization algorithms that we have to minimize a quadratic function. Then we can

do a Taylor expansion of the function f and its derivative around an arbitrary point x̃

f (x) = f (x̃)+(x− x̃) f ′(x̃)+
1

2
(x− x̃)2 f ′′ (23)

f ′(x) = f ′(x̃)+(x− x̃) f ′′ (24)

The stationary point x = xM where the derivative vanishes can easily be obtained by solv-

ing Eq. 24.

xM = x̃− f ′(x̃)/ f ′′ (25)

We assume it is a minimum (i.e. f ′′ > 0) and not a maximum. Eq. 25 gives rise to the

Newton iteration

xl+1 = xl− f ′(xl)/ f ′′ (26)

The iteration of Eq. 26 will obviously converge in a single step for a quadratic function,

but several iterations are needed for a general function. In the case of a quadratic function

we did not have to worry where to evaluate the second derivative since it was a constant.
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This is of course not any more true for a general function. As a matter of fact we see that

for the one-dimensional case we are discussing, Eq. 22 and Eq. 26 are identical if we put

α = 1/ f ′′. Therefore one best adopts for the one-dimensional case the point of view that

we just do steepest descent iterations where α is of the order of 1/ f ′′, but small enough to

ensure convergence. In this case we do not have to answer the question where to evaluate

f ′′.
Exercise [1pt]: Minimize the function −exp(−x2) numerically using Eq. 22. For which

starting values does the iteration of Eq. 26 diverge if we evaluate f ′′ at xl
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5.2 Minimizing continuous many-dimensional functions

The basic concepts of the 1-dimensional case can be carried over into the many dimen-

sional case. The first derivative has just to be replaced by the gradient which by definition

points in the direction of the strongest increase of the function. The opposite direction

consequently gives the strongest decrease of the function. Hence, the steepest descent

iteration becomes

~xl+1 =~xl−α~g(~xl) (27)

where ~g(~x) = ∇ f (~x) is the gradient of the function f . As in the 1-dim case this will

converge to a minimum if α is sufficiently small.

For a function where the second derivatives exist we can again do a Taylor expansion

f (~x) = f (~̃x)+(~x−~̃x)T ~g(~̃x)+
1

2
(~x−~̃x)T A (~x−~̃x) (28)

~g(~x) = ~g(~̃x)+A(~x−~̃x) (29)

where A is the Hessian matrix

A(i, j) =
∂

∂x(i)

∂

∂x( j)
f (~x) (30)

For a quadratic form the Hessian matrix would not depend on the evaluation point, for a

general function it of course does and the problem where to evaluate it will be postponed.
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Solving Eq. 29 for~x and putting~xl = ~̃x and~xl+1 =~x leads to the Newton iteration

~xl+1 =~xl−A−1~g(~xl) =~xl−~pl (31)

Note that we have to solve in each iteration of the Newton method a linear system of

equations for the preconditioned gradient vector p

A~p =~g (32)

There are several basic problems with the Newton iteration:

• As mentioned before, it is not clear where to evaluate it for a non-quadratic form

• Realistic functions are not quadratic forms and so the theory is anyway only an

approximation.

• The calculation of the exact Hessian matrix is numerically too expensive for com-

plicated high-dimensional functions

• The matrix inversion of Eq. 32 is too expensive for high-dimensional functions.

Let us therefore define a slightly more general iteration that we will call preconditioned

steepest descent iteration

~xl+1 =~xl−P~g(~xl) (33)

where P is a still unspecified preconditioning matrix. Evidently we get the steepest descent

iteration of Eq. 27 if we put P = αI and we get the Newton iteration of Eq. 31 if we put

P = A−1
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5.3 Convergence of the steepest descent iteration

For the convergence analysis we will again assume that we are already sufficiently close to

the minimum, so that the function is a quadratic form. Because by definition the gradient

vanishes at xM the Taylor expansion of Eq. 28 becomes

f (~x)− f (~xM) =
1

2
(~x−~xM)T A (~x−~xM) (34)

By shifting the origin (such that ~xM = 0) and the function (such that f (~xM) = 0) we can

without any restriction consider the simpler case

f (~x) =
1

2
~xT A~x (35)

Since the Hessian A is a positive definite symmetric matrix, we can go into an coordinate

system ~y, that is obtained by applying a unitary transformation U on the original coordi-

nate system~x, where A becomes a positive real diagonal matrix D =UT AU with diagonal

elements (eigenvalues) d(k).

f (~y) =
1

2
∑
k

d(k) y(k)2 ; g(k) = d(k) y(k) (36)
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Things are illustrated in the figure below. The ellipsoids represent the equipotential lines

of the function f . The axis of the y coordinate system coincide with the principal axis of

the ellipsoids.

y

y

1

2

x

x

1

2

Let us now assume that at a certain stage of a steepest descent iteration the current point~xl

coincides with the blue dot. Since in this case the gradient points exactly in the direction

of the minimum, we can find the minimum of this one-dimensional subproblem with a

single steepest descent step if we chose α = 1/d(1). If we are at the green dot the same

arguments apply except that now α = 1/d(2). In general our current iterations points are

not located on any principle axis. The gradient of an arbitrary point such as the red dot

has components of both principal axis. In order to guarantee convergence we have to be

conservative and to choose α = 1/max[d(1),d(2)]. Since the components of the gradient
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that correspond to principal axes with small eigenvalues will be damped too strongly, a

steepest descent iteration in more than two dimensions is approaching the minimum very

slowly by a large number of zigzag moves.

The generalization to more than 2 dimensions is obvious. The α of a steepest descent

iteration has to be taken to be the reciprocal of the largest eigenvalue of the Hessian. Let us

now examine the convergence rate for the multi-dimensional case in a more mathematical

way. Since the steepest descent iteration is invariant under unitary transformations of the

coordinate system we can without restriction consider a diagonal Hessian.

Exercise [1pt]: Prove the above statement

The steepest descent iteration then becomes

yl+1(k) = yl(k)−αd(k)yl(k) (37)

Hence

yl+1(k) = y1(k)(1−αd(k))l (38)

where ~y1 is the starting vector for the iteration. Convergence can only be obtained if

|1−αd(k)|< 1. Hence α can be at most twice of the reciprocal of the largest eigenvalue.

So let us put

α = t/dmax (39)

where t is in between 0 and 2. For t = 1, the component k that will converge most slowly

is the one associated to the smallest eigenvalue. Requiring this component to be equal to
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a certain precision p gives

(1− t
dmin

dmax

)l = p (40)

The number of iterations l necessary to obtain this precision p is then given by

l = ln(p)/ ln(1− t
dmin

dmax

) (41)

If dmin
dmax

is small, this is asymptotically equal to

l =− ln(p)
dmax

t dmin

=− ln(p)

t
κ (42)

The ratio between the largest and the smallest eigenvalue of the Hessian matrix is called

the condition number κ = dmax
dmin

. We have thus the result that the number of iterations is

proportional to the condition number κ in the steepest descent method. This is a big prob-

lem. As we will see the conditioning number is typically growing rapidly with respect to

the size of the physical system represented by the matrix. Hence the number of iterations

is growing substantially as well.
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5.4 Convergence of the preconditioned steepest descent iteration

The convergence analysis of the preconditioned steepest descent iteration of Eq. 33 is

analogous to the one for the simple steepest descent iteration. The only difference is that

we perform the analysis in a coordinate system that diagonalizes PA instead of A. The

number of iterations is consequently given by the same formula

l =− ln(p)
dmax

t dmin

(43)

the only difference being that dmax and dmin are now the largest and smallest eigenvalues of

PA. If the conditioning number of PA is smaller than of A, the number of iterations of the

preconditioned steepest descent method will be reduced compared to the simple steepest

descent method. A good preconditioning matrix is a compromise between 2 requirements.

On the one hand it should give a small condition number, on the other hand it should be

easy to calculate and to apply to the gradient. A frequent choice for P is a diagonal or

sparse matrix.

Topology of preconditioned problem:
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5.5 Steepest descent with line minimization

The prescription for a steepest descent iteration with line minimization for a function f is

formally identical to an ordinary steepest descent minimization

~xl+1 =~xl−α~g (44)

The difference is that α is not fixed, but optimized such that

∂

∂α
f (~x+α~g) = 0 (45)

The line minimization ensures that the function will decrease at each iteration point. This

does however not imply that one comes as close as possible to the minimum. As a matter

of fact it turns out that with an optimal value of t (Eq.39) the convergence is as fast

as with line minimization. In addition one iteration is much cheaper without the line

minimization. The conclusion is that one should avoid line minimizations unless one

can not at all estimate the largest eigenvalue of the Hessian matrix. If this estimation is

possible steepest descent with some feedback is a recommendable strategy.
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5.6 Steepest descent with energy feedback

A simple and powerful modification of the simple steepest descent method is the steepest

descent with energy feedback. Assuming that the functional value represents the energy,

we decrease the step size α if the energy rises in an iteration, otherwise we increase it.

Since we know that in the case of an energy increase the parameter t (Eq.39) is roughly

twice as large as would be optimal for the elimination of the stiff components, associated

to large eigenvalues of the Hessian, we decrease α by a factor of 1/2. If the energy

goes down, as it should, we slightly increase α (e.g. by a factor of 1.05) to speed up the

convergence.

5.7 Steepest descent with gradient feedback

In practice one finds that the following feedback gives faster convergence than the energy

feedback. At each iteration one calculates the angle between the current gradient vector

and the gradient vector from the previous iteration. If the angle is larger than let’s say

60 degrees, the step size α is decreased by a factor of 1/2, otherwise it is increased by

1.05. In this way one avoids that consecutive gradients are pointing in opposite directions,

which is obviously not desirable for a fast convergence.
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Exercise [4pt]: An Lennard-Jones cluster is some artificial system where the ’atoms’

interact through the Lennard-Jones potential. The potential energy E of such a cluster is

E = ∑
i=1,Nat

∑
j=1,i−1

4

(
1

|Ri−R j|12
− 1

|Ri−R j|6
)

(46)

Equilibrium geometries are given by minima of the potential energy. Minimize the energy

to find an equilibrium geometry using the steepest descent method with energy and gradi-

ent feedback. α will turn out to be of the order of 1.d-3. Stop the minimization if the gra-

dient norm is less than 1.e-5. Which method is more efficient? The subroutine lenjon.f90

( contained in the exercise material file on http://comphys.unibas.ch/teaching.htm) can be

used to calculate the energy and forces (= negative gradient) of a Lennard-Jones cluster

and the file posinp.xyz contains the coordinates of the lowest energy cluster containing

38 atoms. Displace the atoms slightly from the geometry given in this file and use either

one of the above mentioned minimization methods. It can be assumed that the original

configuration is regained if the energy after minimization agrees with the initial energy.

If the atoms are strongly displaced one might however fall into another local minimum.

The format of the file posinp.xyz is such that it can be viewed with the V Sim visualization

software provided at http://www-drfmc.cea.fr/sp2m/L Sim/V Sim/index.en.html The first

line gives the number of atoms, the second is empty. The remaining lines give the x,y and

z coordinates of each ’atom’ followed by the atom type.
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5.8 The conjugate gradient (CG) method

Eq. 29 tells us that finding the minimum of a quadratic form is equivalent to solving a

linear system. The (preconditioned) steepest descent method can therefore be considered

as the simplest iterative method for solving a linear system of equations. There are how-

ever more powerful methods. One of the most popular method is the conjugate gradient

method. It is based on a bi-orthogonal sequence ~gi,~hi

~gT
i ~g j = ∑

k

gi(k)g j(k) = δi, j (47)

~hT
i A~h j = ∑

k,l

hi(k)A(k, l)h j(l) = δi, j (48)

Solving the system of equations (which arises from zeroing the gradient of 1
2
~xT A~x−~bT~x)

A~x =~y (49)

is easy in the space spanned by hi’s. Writing~x = ∑ j c j
~h j one obtains

∑
j

c jA~h j =~y (50)
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Multiplying from the left by~hi one obtains

∑
j

c j
~hT

i A~h j = ci =~hT
i ~y (51)

In implementations of the conjugate gradient method one is simultaneously generating

the bi-orthogonal sequence and then updating the approximate solution~x. For a m dimen-

sional matrix there are at most m non-zero vectors~hi. Therefore the exact solution has to

be found after at most m iterations. This property is sometimes stressed in mathematics

books. It is however not the property that makes conjugate gradient so useful in practice

because

• It only holds for linear systems, whereas in practice the conjugate gradient method

is usually applied for minimization problems where the function is not a quadratic

form.

• Even for linear systems, it is violated in finite precision arithmetic because of round-

ing errors

• m iterations are far too expensive for large matrices

What makes the conjugate gradient method superior to the steepest descent method is its

faster convergence rate. It can be shown that the number of iterations l is

l ∝
√

κ (52)
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instead of Eq. 42. For badly conditioned systems a lot can thus be gained by using the

conjugate gradient instead of the steepest descent method, for well conditioned (or pre-

conditioned) systems not much can be gained.
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Generation of bi-orthogonal sequence

Here is the conjugate gradient formulation for the minimization of an arbitrary

function f . Given an initial input guess x0 we calculate ~g0 = ∇ f (~x0) and put~h0 =~g0.

Consecutive steps l:

• Determine by a line minimization the αl that gives the lowest energy. That is usually

done by finding the point where the derivative vanishes.

∂

∂αl

f (~xl +αl
~hl) = 0 (53)

• Update the solution

~xl+1 =~xl +αl
~hl (54)

• Calculate new gradient

~gl+1 = ∇ f (~xl+1) (55)

• Calculate new~h
~hl+1 =~gl+1 + γ~hl (56)
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where (Polak Ribiere)

γ =
(~gl+1−~gl)

T~gl+1

~gT
l ~gl

(57)

For the case of a quadratic function one could simplify the Polak Ribiere formula by

using the orthogonality of the vectors ~gl . However it turns out that for a general function

where the orthogonality of the vectors~gl is not any more satisfied, the above Polak Ribiere

formula is more stable.
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5.9 The Newton method revisited

Even though the Newton method is not widely used for finding minima we will discuss

in more detail a variant that is also applicable if the Hessian has zero or very small eigen-

values. The same approach can be used in similar methods such as the preconditioned

steepest descent iteration. So let us assume that we know the Hessian matrix A(x) at a

point x together with the gradient g(x). We can diagonalize this Hessian matrix to obtain

its eigenvalues λi and eigenvectors vi using standard routines such as the routine DSYEV

from LAPACK. This routine overwrites the orginal matrix with all the eigenvectors. Each

column of the matrix contains one eigenvector. The eigenvalues and the corresponding

eigenvectors are in increasing order. If LAPACK is not available, the Jacobi routine from

the supplementary material can also be used. In this case the eigenvalue/vector pairs are

however not ordered by magnitude. We have now to transform the gradient in the new

coordinate system spanned by the orthogonal set of eigenvectors. For this we have to

calculate the coefficients gi

gi = 〈g|vi〉= ∑
j

g( j) vi( j) (58)

where g( j) is the j-th component of g and vi( j) the j-th component of vi. gi is the i-th

component of the gradient vector in the new coordinate system. Since we are now in the

principal axis coordinate system we can multiply each component by the ideal stepsize
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which is the inverse curvature. Since the curvature is given by the eigenvalues we have

ĝi = gi/λi (59)

Then we have to go back in our original coordinate system to get the preconditioned

gradient ĝ. The vector ĝ is what one would obtain by applying A−1 to g:

ĝ = ∑
i

ĝi vi (60)

Finally we update the atomic positions according to

R← R− ĝ (61)

Frequently these methods are applied to geometry optimizations of molecules and solids

where on has to find the atomic coordinates that minimize the energy. Since the energy is

invariant under translations, the Hessian matrix has three eigenvectors with zero eigenval-

ues and is thus singular. Hence A−1 does not exist. Numerically the eigenvalues are not

strictly zero but very small. These nearly zero eigenvalues can lead to problems in Eq. 59.

Unless the system is in the field of an external potential the overall translational force

(negative gradient) has to be zero and so the three components g(i) that correspond to the

translations have to be zero. Analytically we have thus three cases in Eq. 59 where zero

is divided by zero, in numerical work we will just divide two very small numbers. Since
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these numbers are essentially rounding noise the result would be completely wrong. For

a molecule at equilibrium it can be shown that there are three more zero eigenvalues that

correspond to rotations. If the molecule is close to a local minimum the three eigenvalues

are not exactly zero but very small which will lead as well to numerical problems. To

avoid such problems we have to modify Eq. 59 to

ĝi =
gi

λi + γ
(62)

and this value of ĝ(i) has then to be used in Eq. 60. γ has to be chosen such that the

denominator is always positive and not too small. In the case of a molecule or cluster, a

good empirical choice for γ is to set it equal to half of the 7-th eigenvalue (which is the

first eigenvalue that is not zero or very small).

The practical implementation of the Newton method is very similar to the preconditioned

steepest descent iteration. The main difference is that in the preconditioned steepest de-

scent method one uses an approximate Hessian instead of the exact Hessian. Approximate

Hessians can also have zero eigenvalues which have te be treated in a similar manner as

in the Newton method.

Exercise [3pt]: Use the Newton method to find equilibrium geometries of the 38 atom LJ

cluster of the previous exercise. Show that the convergence rate is much faster than with

the steepest descent method. A routine hesslj.f90 that calculates the Hessian matrix and

the routine jacobi.f90 that diagonalizes it are available on http:/comphys.unibas.ch/teaching.htm.
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5.10 Quasi Newton (QN) methods

The basic principle of quasi Newton methods is to build up information about the Hessian

matrix from the gradient evaluations during the minimization iterations. This is possible

because the Hessian matrix (Eq. 30) can be obtained by finite differences from the forces

or gradients

A(R) =




. . ... .
g(R+he1)−g(R)

h
;

g(R+he2)−g(R)
h

; ... ;
g(R+hen)−g(R)

h

. . ... .


 (63)

Denoting by Gi the finite difference vector between the two gradients

Gi = g(R+hei)−g(R) we see that the matrix element Ai, j is given by the scalar product
1
h
〈Gi|e j〉, where ei is an orthonormal set of vectors. Now very similar quantities are a

by-product of any gradient based minimization. If the system is moved in a minimization

step from R to R+ d and the forces are evaluated at both points we can calculate the

approximate curvature along the direction di.

1

〈d|d〉
∂2

∂α2
E(R+αd)|α=0 =

1

〈d|d〉
∂

∂α
〈g(R+αd)|d〉|α=0 ≈

〈G(d)|d〉
〈d|d〉 (64)

where we have again denoted by G the difference between two gradient vectors: G(d) =
g(R+d)− g(R). If we assume our function E to be a perfect quadratic form then G(d)
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is equal to Ad. The subspace Hessian matrix B with respect to an non-orthogonal set of

vectors di is then given by

Bi, j = 〈di|A|d j〉= 〈G(di)|d j〉 (65)

The eigenvalues of the Hessian A can consequently be obtained by solving the generalized

eigenvalue problem for the matrices B and S

Bvl = λlSvl (66)

where S is the overlap matrix Si, j = 〈di|d j〉. This approach clearly fails if the vectors di are

linearly dependent. Numerical problems actually already arise if the vectors di are nearly

linearly dependent, i.e if the overlap matrix is nearly singular, which can be detected by

very small eigenvalues of the overlap matrix. Standard Quasi Newton methods such as

the popular BFGS variant, named after their inventors Broydens, Fletcher, Goldfarb and

Shanno, can therefore fail in such cases. Linearly dependent vectors can be encountered

if the minimization is started far away from the local minimum. If the minimiztion starts

close to the local minimum where the function can be well approximated by a quadratic

form such problems do generally not arise and rapid convergence is generally found. The

most popular implementation of the BFGS method is the Limited memory LBFGS variant

where second derivative information is exploited only from the few last iterations. Typi-

cally a history length of about 10 is choosen. Even if the dimension of the entire Hessian
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matrix is in general much larger than this history length, it turns out that the convergence

speed is not improved by a longer history. On the contrary, a too long history can lead to

numerical instabilities.

Exercise [4pt]: Extracting curvature information from a set of gradient vectors

Take the local minimum R0 of the 38 atom LJ cluster of the previous exercise and calcu-

late the Hessian matrix for this configuration using the subroutine hesslj.f90 ( available

in the tar file at http:/comphys.unibas.ch/teaching.htm). Find the eigenvalues of this ma-

trix by using the routine DSYEV from the LAPACK library if it is available or otherwise

the routine jacobi form the Supporting Material. Six of these eigenvalues should be zero

corresponding to the three translations and the three rotations that leave the energy in-

variant. The entire set of eigenvalues will serve as reference values for the following part

of this exercise.

Next, perturb this minimum by a random displacement

r0 = R0 +aχ

where χ is a random vector and the amplitude a should be about 1.e-2. Generate then a

sequence of configurations ri, i = 1, ...,n, by performing a steepest descent geometry opti-

mization with a energy or gradient feedback. Consider then the sequence of displacement

vectors di

di = ri− ri−1
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Use at each configuration ri the corresponding force fi to obtain the gradient difference

Gi

Gi =−(fi− fi−1)

Calculate then the overlap matrix Si, j = 〈di|d j〉 and the Hessian matrix in this basis, Bi, j =
〈Gi|d j〉 for several values of n. For a purely quadratic form the Hessian matrix B would

be symmetric, i.e Bi, j = B j,i. Since this is not the case there will be small deviations from

symmetry. Check that these deviations get smaller if the initial displacement amplitude is

reduced. Next calculate the eigenvalues of the generalized eigenvalue problem of Eq. 66

by using the Lapack routine DSYGV. Verify that you get for small values of n already

with reasonable precision the large eigenvalues of the full Hession matrix and that all

the eigenvalues lie within the spectrum of the full Hessian matrix. Verify that once n gets

larger numerical instabilities arise which prevent obtaining all the 3× 38 eigenvalues of

the full Hessian matrix correctly.
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5.11 The DIIS (Direct Inversion in Iterative Subspace) minimization

method

Be~c∞ the exact solution of a quadratic minimization problem and~ci (i=1, ..,m) a set of m

approximate solution vectors. Their error vectors are defined by

~em =~cm−~c∞ (67)

We form a new vector ~̃cm

~̃cm =
m

∑
i=1

di~ci (68)

If ~̃cm was the exact solution, it would fulfill

m

∑
i=1

di~ci = ~c∞ (69)

m

∑
i=1

di(~c∞ +~ei) = ~c∞ (70)

m

∑
i=1

di~c∞ +
m

∑
i=1

di~ei = ~c∞ (71)
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This is satisfied if
m

∑
i=1

di = 1 ;
m

∑
i=1

di~ei = 0 (72)

Last condition can only be fulfilled approximately, leading to the minimization problem

min

[
〈

m

∑
i=1

diei|
m

∑
i=1

diei〉
]

(73)

under the constraint ∑m
i=1 di = 1. This leads to the system of equations




〈e1|e1〉 〈e1|e2〉 ... 〈e1|em〉 1

〈e2|e1〉 〈e2|e2〉 ... 〈e2|em〉 1

... ... ... ... .
〈em|e1〉 〈em|e2〉 ... 〈em|em〉 1

1 1 ... 1 0







d1

d2

.
dm

dm+1




=




0

0

0

0

1




(74)

In practice the error vectors are approximated by~ei = P~gi

The new vector is then given by

~̃gm = ∇ f (~̃cm) (75)

~cm+1 = ~̃cm−P~̃gm (76)
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Variable preconditioning DIIS implementation

There are possibly two preconditioning matrices P = Pm and P̃ = P̃m that depend on the

iteration step m.

At the m-th step do•
~gm = ∇ f (~cm) (77)

•
~ei = Pm~gi , i = 1, ...,m (78)

• Solve Eq. 74 to get ~̃cm = ∑m
i=1 di~ci . Under the assumption that we are in a quadratic

region, the coefficients di allow us then also to calculate

~̃gm = ∇ f (~̃cm) = ∇ f (
m

∑
i=1

di~ci) =
m

∑
i=1

di∇ f (~ci) =
m

∑
i=1

di~gi (79)

•
~cm+1 = ~̃cm− P̃m~̃gm (80)

This implementation requires to store 3 sequences of vectors: ~ci, ~gi and ~ei. If the ap-

plication of the preconditioning matrix Pm is cheap the ~ei’s can be calculated on the fly

from the ~gi’s and one does not have to store them. The most expensive step is usually the

calculation of the gradient ~gm, which has to be done once during each iteration.
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Fixed preconditioning DIIS implementation

Only the two sequences ~cm and ~em have to be stored if there is a single preconditioning

matrix P that does not change during the iterations.
•

~gm = ∇ f (~cm) (81)
•

~em = P~gm (82)

• Solve Eq. 74 to get ~̃cm = ∑m
i=1 di~ci Under the assumption that we are in a quadratic

region, the coefficients di would allow us then also to calculate ~̃gm, even though we

do not actually calculate it

~̃gm = ∇ f (~̃cm) = ∇ f (
m

∑
i=1

di~ci) =
m

∑
i=1

di∇ f (~ci) =
m

∑
i=1

di~gi (83)

•

~cm+1 = ~̃cm−P~̃gm =
m

∑
i=1

di~ci−P
m

∑
i=1

di~gi =
m

∑
i=1

di(~ci−P~gi) =
m

∑
i=1

di(~ci−~ei) (84)
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5.12 Comparison of Minimization Methods

Steepest descent versus methods with faster convergence rates

Both CG, DIIS and QN methods assume that we are in a quadratic region. This is fre-

quently not the case at the start of a minimization procedure. In this case steepest descent

with feedback is the method of choic, since the other methods will frequently diverge in

a strongly non-quadratic region. The line minimization makes the CG however somewhat

more stable than the other methods.

DIIS versus CG and QN

The DIIS method has the advantage that it is more flexible than CG and QN. Even though

there is also a preconditioned version of the CG method there is no preconditioned CG

method that would allow for variable preconditioning. Since the set of approximate solu-

tion vectors~cm is arbitrary, the DIIS method can be applied to a constrained minimization

problem. Imposing constraints after each iteration modifies the sequence of approximate

solution vectors generated during the iterations and would be illegal in the CG method. In

the DIIS method imposing the constraints does not bother. The disadvantage of the DIIS

method compared to the CG method is that it needs more memory to hold the set of vec-

tors~ci and~ei. If memory is limited, the sequence of vectors can be restricted to a certain
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maximum value. One keeps for instance only the sequence of the last 10 iterations, even

though one might need 50 iterations to converge. It turns out that with a reasonably long

truncated sequence the convergence is not slowed down significantly. Another advantage

of the DIIS and QN methods over the CG method is that they require only a single force

evaluation per step.
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PROJECT: A geometry optimization method inspired by molecular

dynamics

Physical background

In contrast to the previously introduced minimization method which are on the gradient,

there are also minimization methods which are based on equations of motion. In this

project the FIRE (fast inertial relaxation engine) method will be introduced. Following

this equation of motion will lead the system to slide down the potential energy surface

by accelerating in the downhill direction and to stop uphill motions. Like a skier sliding

down some mountains, not every step is exactly along the gradient direction, but the mo-

mentum is also taken into account. Therefore the information of previous steps during

the geometry optimization is exploited which are contained in the current velocity. In

contrast, steepest descent for example keeps only limited information of previous steps

(for example a feedback in energy or gradient) when performing a downhill relaxation.

FIRE is especially useful if the energy and forces can not be computed to machine preci-

sion since the velocity will not allow the relaxation path to suddenly change the direction

when the noise level is reached. This is for example the case for density functional the-

ory calculations. The implementation of FIRE is especially easy if a molecular dynamics

integrator has already been implemented, since only small modifications of the velocity

update have to be performed
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The equation of motion for the modified molecular dynamics of FIRE is given by

v̇(t) =
F(t)

m
− γ(t)|v(t)|(v̂(t)− F̂(t)) (85)

Tasks

1. The subroutine lenjon.f90 (available at http:/comphys.unibas.ch/teaching.htm ) which

will provide the energy and forces of a system consisting of Lennard-Jones parti-

cles. On the Cambridge Cluster Database

(http://www-wales.ch.cam.ac.uk/CCD.html) there are many putative global mini-

mum configurations for Lennard-Jones clusters. The file format of the files is the

xyz format and can be visualized with v sim

(http://inac.cea.fr/sp2m/L Sim/V Sim/index.en.html) (also available from the ubuntu

repositories). Write a test program to make sure that the Lennard-Jones subroutine

is working correctly by comparing the computed energies with the reference ener-

gies on the Combridge Cluster Database.

2. Write a program that will perform a classical molecular dynamics simulation with

the Euler algorithm. The Euler algorithm can be derived using the forward finite

difference formula for both the coordinates of the particles i and their velocities.

xi(t) = xi(t+∆t)−xi(t)
∆t
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ai(t) = vi(t+∆t)−vi(t)
∆t

Solving for the terms describing the state at t +∆t we arrive at the iterative scheme

to update the particle coordinates and their velocities.

xi(t +∆t) = xi(t)+vi(t)∆t

vi(t +∆t) = vi(t)+ v̇i(t)∆t

First use the Newtons’s equation of motion to compute v̇i, namely v̇i = Fi/mi. Run

a molecular dynamics simulation on a dimer of two particles using your binary

Lennard-Jones subroutine. Choose a timestep which is not too large. Plot the total

energy along the molecular dynamics trajectory. You will observe a slight increase

in the total energy as the simulation progresses. Although the energy is not con-

served, the Euler algorithm will be good enough to perform the FIRE relaxation.

3. Now we will modify the velocity verlet algorithm such as to obtain the FIRE ge-

ometry optimization algorithm. Modify the velocity update during the molecular

dynamics simulation as follows:

• set initial values: ∆t = ∆t0, α = αstart , v = 0
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• use normal molecular dynamics to compute x, F =−grad(E) and v

• check if the force norm is converged, and if converged: stop!

• calculate the power P = F · v. This value will tell us if moving along the

downhill (P > 0) or uphill (P < 0) direction on the energy landscape.

• set v→ (1−α)v+αF̂|v|. Try to understand this update mechanism. How do

we need to choose α in order to arrive at the steepest descent algorithm?

• if the downhill motion is retained (P > 0) in at least Nmin censecutive steps,

then ∆t → min(∆t finc,∆tmax) and α→ α fα. It is important not to accelerate

the dynamics initially (for the first Nmin steps) to get a stable relaxation.

• if we encounter an uphill motion (P ≤ 0), then ∆t → ∆t fdec, v→ 0 and α→
αstart . This means that we immediately stop the MD and do a restart if we

encounter a negative power P during the relaxation.

• return to MD and repeat

Good parameters for the FIRE algorithm are:

Nmin = 5, finc = 1.1, fdec = 0.5, αstart = 0.3, fα = 0.99. Good values for the

timesteps are ∆t0 = 5.d− 3 and ∆tmax = 1.d− 2, but feel free to tune the param-

eters.
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4. Perform a statistical comparison to the steepest descent method implemented in the

previous exercises (the best modification is with gradient feedback). As a statistical

dataset you can use the putative global minima structure found on the Cambridge

cluster database with small random displacements from equilibrium. How do the

methods compare for small clusters (less than 15 atoms), how for large clusters

(more than 100 atoms)? What do you think is the explanation of your results?
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6 Atomistic simulations and molecular dynamics

Atomistic simulations are simulations where the atomistic structure of matter is fully ac-

counted for. This is in contrast to macroscopic simulations where the basic quantities

are macroscopic quantities such as density or pressure. In atomistic simulations the exact

number of atoms in the system, the positions of the atoms and their velocities are typically

known. This atomic resolution has of course its price. One can not simulate macroscop-

ically large systems. Those systems would contain an astronomically large number of

atoms and the simulation would take a quasi infinite time even on the fastest computer.

The number of atoms that can be treated in an atomistic simulation varies depending on

how accurately the interactions among the atoms are treated. In principle the interactions

between atoms are mediated through the electrons which have to be treated by quantum

mechanics. If the electrons are treated with the most accurate quantum mechanical meth-

ods one can at most treat molecules containing a few atoms. With less accurate but nev-

ertheless predictive methods such as density functional methods one can treat up to a few

hundred atoms. Quantum mechanical electronic structure methods are an advanced topic

that will not be treated in this course. In this course we will assume that the interactions

between the atoms are described by so-called force fields with sufficient accuracy. Force

fields eliminate the electrons entirely and are therefore not quantum mechanical methods.

One assumes that the interactions between the atoms can be described by some classical
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potential. This classical potential is not of a simple form such as the gravitational poten-

tial but it contains in general fairly complicated terms. The general form of these terms

is guided by chemical intuition. Nevertheless it varies for different force fields. The fi-

nal form of a force field requires to fix many variables. The value of these variables is

found by fitting such that various quantities that can be calculated with a force field agree

either with experimental data or with data that has been calculated with highly accurate

quantum mechanical methods. As a consequence of this construction force fields typically

give fairly accurate results for systems that are similar to the systems that were used for

the fitting procedure but for system that are very different they can fail.

A force field is an expression for the energy of the systems as a function of the atomic

positions. The force fields from chemistry contain the following basic terms

• A bond stretching energy: const (|Ri−Rj| − di, j)
2. Only atoms i and j that are

connected by bonds of length di, j give such an energy contribution. The definition

which atoms are connected by bonds is based on simple geometric criteria and is

fixed at the start of the simulation. As a consequence, bonds can not be broken or

formed during the simulation

• Bond bending terms, that rise the energy if the angle formed by the two atoms

bonded to a central atom, deviates from the ideal angle for the bonding configura-

tion. The determination of the ideal angle is usually based on the expected hyd-

bridisation of the central atom and is also fixed at the start of the simulation. Hence
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a carbon atom can for instance not change from being sp3 bonded to being sp2

bonded during a simulation.

• Torsional terms, that depend on how planar a sequence of 3 bonds is

d

β

γ

Figure 1: bondstretching: the distance d changes, bond bending: the angle β changes,

torsion: the angle γ changes

Depending on the force field more sophisticated terms are included, such as terms that

couple torsions to stretchings or higher than quadratic terms for the stretching part. All the

terms listed up to now have the property that they are short range. Physically this means

that the energy of an atom is not influenced by what is going on further away. Only close

by bonded neighbor atoms count. Computationally this means that the energy and forces
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can be calculated with linear scaling as will be discussed in more detail soon. Force fields

of this type are also widely used in theoretical biology to simulate large biomolecules such

as proteins.

In addition to these short range interactions there are long range terms:

• Van der Waals terms

• Electrostatic terms

Some force fields that originated in the physics community are more sophisticated. They

allow for bond breaking and forming as well as for hybridisation changes. At the start

of a simulation one has to specify only the atomic positions, but not their connectivity.

Their disadvantage is that they typically exist only for materials composed of a single

type of atoms such as silicon and do not allow to put other chemical elements into the

system. These kinds of force fields are also frequently called interatomic potentials. For

technologically important materials such as silicon or carbon several different force fields

can be found in the literature. Among the best force fields for silicon available today is

the EDIP (Environment Dependent Interatomic Potential) force field that will be used in

the project on silicon melting.
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6.1 Structure determination

At zero temperature the structure of a molecule or solid is given by the condition that

its energy is minimal. Hence, if we want to find the structure with the help of a force

field we have to vary the positions of the atoms until we find a minimum. From the

mathematical point of view we thus have to find the minimum of a function which is the

force field energy expression. This function that represents the dependence of the energy

on the atomic positions is called the potential energy surface. We have thus to find minima

’on’ this potential energy surface. The potential energy surface is typically a complicated

function with many minima. For the moment we will neglect the fact that many minima

exist and assume that we just want to find a single minimum. Numerical methods to find

the minimum have previously been discussed.
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The situation is illustrated below for the simplest case of a diatomic molecule such as H2.

Obviously, in this case the energy depends only on the distance d = |R1−R2| between

the two nuclei. Some reactive force field (i.e. a force field that allows for bond breaking)

may give the curve shown below. The structure of such a diatomic molecule is described

by a single number, which is the bond length. This bond length dbond is the length that

minimizes the force field energy expression E(d).
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At finite temperature the structure of condensed matter is determined by the condition

that the free energy F = E − TS is minimal. In many cases the entropy S is small and

the term T S can be neglected at room temperature. So the structure is again determined

by the condition that the energy is minimal. There are however exceptions and it will be

discussed later on how to calculate the entropy contributions to F .
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PROJECT: Phase transition of Silicon from cubic diamond to β-Sn

Physical background

In this project you will calculate the transition pressure pt for the cubic diamond to β-

Sn phase transition of silicon under hydrostatic compressions. The method to determine

the transition pressure is based on the fact that the negative derivative of the energy with

respect to the volume is the pressure, p =− ∂E(V)
∂V

. So a tangent touching an energy curve

E(V ) in a E−V diagram will have a slope corresponding to −p at the point of contact.

For two phases a and b in a E−V diagram, commonly approximated by two parabola, a

common tangent will have the slope corresponding to the pressure −pt . At this pressure

both phases can coexist (see figure below). This common-tangent construction will also

give the transition volumes of the two phases, which are different from the equilibrium

volumes.
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The calculations will be performed with density functional theory (DFT) calculations us-

ing the abinit plane wave package. DFT calculations are used to obtain an approximate

solution of the many-electron Schroedinger equation and is the most common method to

perform ab initio calculations. With DFT many-electron systems can be treated with a

reasonable amount of computational cost while still giving good accuracy on most physi-

cally interesting quantities (like equilibrium geometries). It is being successfully used not

only in physics, but also in chemistry, biology and material science. You will learn how

to use the abinit plane wave package to perform simple energy calculations as a function

of the unit cell volume. The results will then be used to creat a E−V diagram of the two

silicon bulk phases cubic diamond and β-Sn and the transition pressure is then computed.

Tasks

1. First install abinit either by downloading the source file from http://www.abinit.org/

or, if you have ubuntu installed on your system, by getting an older version of

the package from the ubuntu repositories. You may want to run some tests to be

sure that abinit was installed correctly, or do some tutorial tasks also available on

http://www.abinit.org/.

2. The structure of the cubic diamond (relaxed at 0GPa) and the β-Sn (relaxed at

12GPa) phase of silicon are available at http:/comphys.unibas.ch/teaching.htm in

a format which can be visualized using the

v sim tool http://inac.cea.fr/sp2m/L Sim/Vi Sim/index.en.html (also available from
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the ubuntu repositories). Before running abinit you need to prepare the input files.

In chemistry, the valence electrons provide the most important contribution to the

interatomic interaction. Therefore, in DFT calculations, the core electrons are very

often replaced by pseudopotentials fitted to all-electron calculations. For silicon the

following pseudopotential file is needed:

ftp://ftp.abinit.org/pub/abinitio/Psps/LDA HGH/14si.4.hgh. The abinit software will

read the input parameters for the calculations from a file, which has usually the ex-

tension “.in”. This file also includes all unit cell parameters. We have prepared two

input files for a single energy calculation called diamond.in and betatin.in. Read

the input file and try to understand the meaning of each line. All keywords are

commented in the file and there is a good user guide on the abinit web page with

a detailed documentation on all keywords. In abinit, the keywords are followed by

the values of the parameters related to the keyword. However, the ordering of the

keywords within the input file is not important.

Sample the energies with respect to the unit cell volume using modified input files.

For this you need to compress and expand the given unit cell and compute the en-

ergies. This can be done by modifying the parameters of “acell”, which contain the

unit cell vector length. Of course, the atomic positions, contained in the keyword

“xcart”, also need to be scaled according to the change of unit cell volume. The unit

cell volume will be computed automatically by abinit and can be found by looking
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for the variable “ucvol” in the output file. Do not compress or expand the cell to

much since the quadratic region of the energy vs. volume function is not very large.

So a volume change of max. ±5% around the energy minimum should be enough.

Be careful since the β-Sn structure is not at the energy minimum, but at the enthalpy

minimum at 12 GPa. The energy values can be found in the output file if you search

for “Etotal”. To run abinit, prepare a file (for example diamond.files) containing the

filenames with the following meaning:

ab.in The main input file

ab.out The main output will be put into the file

abi The name of input wavefunctions (if any)

abo The output wavefunctions will be written to abo WFK

tmp The temporary files will have a name that use the root ”tmp”

14si.4.hgh The pseudopotential needed for this job

Then, use abinit < diamond.files >& log to run the job (or abinis for old

versions).

Hint: instead of preparing a new input file for each unit cell volume you can use

the keyword “ndtset”, followed by the number ndata of data sets you would like
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to compute. Then, where the unit cell is defined, you can enumerate “acell” and

“xcart” from 1 to ndata, like: acell1, xcart1, acell2, xcart2, and so on.

3. Plot the results you obtained from both cubic diamond and β-Sn structure in an

energy vs. volume plot (don’t forget to use the energy per atom). Then, fit two

parabola into the two data sets. Find a tangent that touches both parabola and com-

pute its slope. The slope is exactly the pressure pt at which a phase transition be-

tween cubic diamond and β-Sn structure is possible. Remember that all calculations

in abinit are performed in atomic units, and that 1Ha/Bohr3 is 29421.033GPa.
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6.2 Vibrational properties

At finite temperature the atoms of a molecule or solid are not exactly clamped at the

atomic positions that give the lowest energy. Instead they perform oszillations around

these equilibrium positions. Typically the thermal energies are very small compared to

the variations of the potential energy surface and so the oscillations explore only a small

volume around the equilibrium positions. Within this small volume the potential energy

surface can be approximated by a quadratic form. For simplicity, let us first consider again

the case of the H2 molecule and let us assume that the two atoms are aligned along the x

axis and that they can only move along the x axis. In this case the potential energy surface

from the previous figure can be approximated around the equilibrium bond length dbond

by

E = Ebond + c(d−dbond)
2 = Ebond + c(X2−X1−dbond)

2 (86)

= Ebond + c(X2−dbond)
2−2cX1(X2−dbond)

2 + cX2
1 (87)

= Ebond +

(
X2−dbond

X1

)T (
c −c

−c c

)(
X2−dbond

X1

)
(88)

= Ebond +

(
X2−X0

2

X1−X0
1

)T (
c −c

−c c

)(
X2−X0

2

X1−X0
1

)
(89)
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where X0
2 = dbond and X0

1 = 0. The previous approximate form is identical to a Taylor

development of a multivariate function up to second order terms. The first order term van-

ishes because of the condition that the gradient vanishes in a minimum. The generalization

to the case of an arbitrary molecule or solid is straightforward. The Taylor expansion of

the potential energy surface takes on the following form

E0 +
1

2
∑
I,J

(RI−R0
I )DI,J(RJ−R0

J) (90)

RI is the position of the atom I and it is therefore a vector of length 3. The superscript

zero (such as in R0
I ) always refers to the equilibrium configuration. The elements of the 3

by 3 matrices DI,J are called the interatomic force constants.

DI,J =




∂2E
∂XI∂XJ

∣∣∣
RI=R0

I ,RJ=R0
J

∂2E
∂XI∂YJ

∣∣∣
RI=R0

I ,RJ=R0
J

∂2E
∂XI∂ZJ

∣∣∣
RI=R0

I ,RJ=R0
J

∂2E
∂YI∂XJ

∣∣∣
RI=R0

I ,RJ=R0
J

∂2E
∂YI∂YJ

∣∣∣
RI=R0

I ,RJ=R0
J

∂2E
∂YI∂ZJ

∣∣∣
RI=R0

I ,RJ=R0
J

∂2E
∂ZI∂XJ

∣∣∣
RI=R0

I ,RJ=R0
J

∂2E
∂ZI∂YJ

∣∣∣
RI=R0

I ,RJ=R0
J

∂2E
∂ZI∂ZJ

∣∣∣
RI=R0

I ,RJ=R0
J




(91)

The force as obtained from Eq. 90 is given by

FI =−
∂E

∂RI

=−∑
J

DI,J(RJ−R0
J) (92)
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Since the restoring force is linear in the displacement away from equilibrium RJ−R0
J the

motion will be oszillatory and we can therefore make the ansatz

RI(t)−R0
I =U l

I exp(iωlt) (93)

Inserting this ansatz into Newton’s equation of motion

MIR̈I(t) = FI (94)

gives

ω2
l MIU

l
I = ∑

J

DI,JUl
J (95)

This is an generalized eigenvalue problem. Upon solving it by well known numerical

methods one obtains the eigenvalues and eigenvectors of this eigenvalue problem. The

eigenvalues are the squares of the frequencies ωl of the different vibrational modes and

the eigenvectors tell us which atom moves in which way if this mode is excited. A mode

is called delocalized if all the atoms participate significantly to the oszillatory motion. If

only a subgroup of atoms is participating a mode is called localized.
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6.3 Molecular dynamics

Molecular dynamics (MD) is a widely used tool in atomistic simulations. In a molecular

dynamics simulation one calculates the trajectories of all the atoms in a system using

Newton’s equations of motion. In a numerical simulation the continuous time variable

is discretized into finite time steps and for each time step one updates all the atomic

positions. Molecular dynamics is like a very powerful microscope that shows all the

atomic positions and their evolution in time. It can be used to

• calculate thermodynamic averages, since for an ergodic system (realistic systems

are ergodic) time averages are equal to ensemble averages. For such an application

MD is an alternative to Monte Carlo methods.

• In contrast to Monte Carlo methods it can also be used to calculate non-equilibrium

thermodynamic properties such as transport properties.

• MD can be used to follow any atomistic process, such as a chemical reaction or the

opening of a crack in a material shown below

(taken from www.almaden.ibm.com/st/Simulate/Fracture/).
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Velocity and temperature due to a crack propagation in a volume containing ≈ 106 atoms
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The forces acting on the nuclei (i.e. on the atoms) in a given configuration are needed for

a MD simulation. These forces can be obtained in two ways

• From an ab-initio electronic structure calculation. This is in principle the prefered

way, but it is numerically very costly. As a consequence one can afford only a

relatively small number of time steps. The basic time scale in a MD simulation

is the oscillation period of fast phononic vibrations. The MD time step is a small

fraction ( perhaps 1/100) of this period. Consequently one can follow with ab-initio

MD only events that occur within a few vibrational periods.

• Because of these limitations force fields are frequently used to obtain the forces.

Even though the forces obtained from force fields are in general less reliable than

ab initio forces, they are orders of magnitude faster to compute.

• Recently machine learning methods have been developed to represent potential en-

ergy surfaces. The can frequently achieve the accuracy of ab-initio methods but are

much faster.
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6.4 Boundary conditions

Periodic boundary conditions are a natural choice if one wants to describe crystalline

solids where the basic building block is repeated quasi ad infinitum. With periodic bound-

ary conditions, a particle near the boundary of the periodic volume interacts across the

boundary with the periodic images of particles at the opposite end of the periodic volume.

Periodic boundary conditions are also useful in many other situations. If one wants to

simulate a liquid, one could put it into some kind of virtual container that could in a

simulation for instance be modeled by a strongly repulsive potential. Close to the wall one

would then have surface effects and in order to have the influence of these surfaces small,

a very large system with a larger volume to surface ratio would need to be simulated.

It turns out that periodic boundary conditions eliminate to a large extent surface effects

and the thermodynamic limit can be approached much faster than with other boundary

conditions. This is intuitively understandable. With periodic boundary conditions any

particle is surrounded by other particles and no particle is close to a surface. The same

considerations hold also true if one is studying a molecule in solvation.
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Periodic boundary conditions are illustrated below. The particles 1 and 3 that would only

interact with particles 4 and 2 under non-periodic boundary condition because no other

particles are within the cutoff range of the potential, are now interacting with the periodic

images of 3 and 1 respectively.
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The motion of particles in a molecular dynamics simulation is also affected by periodic

boundary conditions. A particle that leaves the box on one side is entering with the same

velocity through the opposite side. This is illustrated in the figure below for particle 4.

The figure shows the positions of 4 particles at two consecutive time steps in a molecular

dynamics simulation. Whereas in the previous figure all the periodic images were shown,

only the relevant periodic image is shown below.
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6.5 Time propagation algorithms for MD

In this section we will assume that the forces are given and concentrate onto how to use

them to numerically solve Newton’s equation of motion:

Mi

d2Ri

dt2
= Fi (96)

A good time propagation scheme should have the following properties:

• Short term accuracy

The accuracy of an algorithm measures the difference in the true trajectory satis-

fying Newton’s equation of motion and the numerical trajectory which is a finite

sequence of atomic positions. One has to distinguish between the short term error,

i.e. the error that one encounters if one follows a trajectory only over a short time

interval and the long term error. The short term error is obviously related to the

order of the finite difference formula that is used to calculate the second derivative

in Newtons equation.

• Long term accuracy

The long term accuracy is not related to the short term accuracy. As a matter of

fact long term accuracy is more important than short term accuracy since in molec-

ular dynamics one is frequently doing millions of time steps. The most important
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aspect concerning the long term stability is the conservation of energy. As for the

continuous case energy conservation is satisfied if one has time reversibility. Time

reversibility means that the system would trace back its trajectory in phase space if

one were to reverse all the velocities at a given instant in time. Let us now give a

simple argument to show that a reversible time propagation algorithms can not give

rise to a systematic drift of some quantity away from the true value, but that it can

only fluctuate around this true value. The proof of this property is by contradiction.

Let us assume that some quantity such as the total energy, which should be con-

served, is increasing during a simulation. The total energy at the end configuration

EB would thus be larger than at the initial configuration EA, EB > EA. Running

backward we would get EA > EB which is a contradiction.

• Area preservation in phase space

As does the true Newtonian dynamics, the numerical time propagation scheme

should conserve any volume element in phase space.

• Insensitivity to rounding

Since the time propagation scheme is used in floating point arithmetic, it should be

insensitive to rounding errors.
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In spite of numerous research efforts the simple Verlet algorithm, obtained from a simple

first order finite difference approximation to Newton’s equation, has turned out to be one

of the best according to the above criteria:

Ri(t +h) = 2Ri(t)−Ri(t−h)+
h2

Mi

Fi(Ri(t)) (97)

h denotes the time step. It is easy to see that the Verlet algorithm is time reversible.

Replacing h by −h in Eq. 97 gives back the same prescription. Its short term accuracy is

only moderate, namely h2. There is a second version of the Verlet algorithm, the velocity

Verlet algorithm, which is identical in exact arithmetic to the original Verlet algorithm of

Eq. 97 but which is more stable in finite precision arithmetic.

Ri(t +h) = Ri(t)+hVi(t)+
h2

2Mi

Fi(Ri(t)) (98)

Vi(t +h) = Vi(t)+
h

2Mi

(Fi(Ri(t +h))+Fi(Ri(t))) (99)

The array V in the velocity Verlet algorithm is initially just a dummy variable that holds

some partial results. However Eq. 99 suggests to look upon it as a velocity.

Exercise [1pt]: By eliminating the velocities in Eq. 98,99 show that it is identical to Eq. 97.
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To illustrate the stability of the velocity Verlet algorithm let’s contrast it with another

simple integration method, namely Euler’s method:

Vi(t +h) = Vi(t)+
h

Mi

Fi(Ri(t)) ; Ri(t +h) = Ri(t)+hVi(t) (100)

Since Euler’s method is not time reversible, it leads to a systematic drift of the energy

away form its exact value. This is illustrated in Figure below for the case of an harmonic

oscillator with an energy of 1/2. The amplitude of both the position x and the velocity

v increase leading to a rapid rise of the total energy. The increase in the total energy

is slower for smaller time steps, but it does not entirely disappear and it would still be

unacceptably large for simulations that follow the evolution of the system for a duration

of more than a few vibrational periods.
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Propagating the same harmonic oscillator with the velocity verlet algorithm does in con-

trast not show any drift, even for extremely long propagation times. The energy conserva-

tion over a short time interval is shown in the Figure below. The energy is oscillating with

a small amplitude around the exact value without showing any drift.
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Even though average quantities such as the energy are well conserved over long time

intervals with the Verlet algorithm, an individual trajectory is not reliable. There is the

so-called Lyapunov instability which tells us that trajectories with slightly different ini-
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tial conditions diverge exponentially fast from each other. For this reason any numerical

trajectory has to diverge exponentially fast from the true trajectory and in the same way

two numerical trajectories with slightly different initial conditions diverge exponentially

fast. This is unavoidable and can not even be cured by the best possible time propagation

algorithm. This Lyapunov instability does not invalidate the MD method. As a matter of

fact, all the exponentially diverging trajectories give very similar average properties.
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6.6 Calculating the short range forces from a force field

By definition, the short range forces cause only interactions between atoms that are close

by. We will denote the radius beyond which the interation is zero by cut. Once one knows

which atoms are close by the calculation of these short range forces is quick. First one

has however to find out which atoms are close to each other. This information is typically

stored in a list that is called the nearest neighbor or Verlet list. Let us now discuss how to

calculate this Verlet list.
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In a trivial implementation one searches for each atom over all other atoms as shown be-

low. The identities (i.e. their number) of the nearest neighbors are stored in the array lstb.

The array elements lsta(1, iat) and lsta(2, iat) point to the starting and ending positions

of the section in lstb that contains the neighbors of atom iat.

indlst=0

do iat=1,nat

! starting position

lsta(1,iat)=indlst+1

do jat=1,nat

if (jat.ne.iat) then

xrel1= rxyz(1,jat)-rxyz(1,iat)

xrel2= rxyz(2,jat)-rxyz(2,iat)

xrel3= rxyz(3,jat)-rxyz(3,iat)

rr2=xrel1**2 + xrel2**2 + xrel3**2

if ( rr2 .le. cut**2 ) then

indlst=indlst+1

! nearest neighbor numbers

lstb(indlst)=jat

endif

endif

enddo

! ending position

lsta(2,iat)=indlst

enddo
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The above loop has obviously quadratic scaling and would thus become for large systems

the dominating part in the presence of short-range potentials only. This quadratic scaling

can easily be eliminated. in the following way. We subdivide the system into cells whose

side length is equal to or larger than the interaction range of the potential and we assign

all the particles in the system to one such cell. This can be done with linear scaling. Thus

we can calculate with constant effort (independent of the total number of particles in the

system) the nearest neighbors of each particle, since we have to search only in the same

cell and in the neighboring cells. In the two-dimensional case illustrated below we have

to search over 9 cells in the three-dimensional case over 27 cells.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16
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The most elegant way to store the information which particle belongs to which cell is the

so called linked cell list. A linked list consists of the two arrays called HEAD and LIST.

The array HEAD has one element for each cell and this element contains the number of

one (’the first’) particle in the cell. The array LIST is of length N and tells us where in the

list the next atom index of the atoms in this cell is stored. Both arrays together with the

two-dimensional system of 16 cells containing 18 particles they are describing is shown

on the next page
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   4   4

   8   8

   12   12

   3   3

   7   7

   2   2

   6   6

   1

   5

   11   11   10   10   9

   16   15   13    14

 17
 11

  1

  9

 10

 15

 20

 19
 14

  2

  8

  5

  3
 16

 12

  4

  6

  7
 13

 18

Head:

17 9 15 20 19 2 8 13 6 12 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

List:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3 4 1 10 5 11 16 14

Navigating the list:

(If a place in the table is empty, the value of the 
corresponding array element is zero)

7
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Exercise [3pt]: Write a subroutine that constructs a linked cell list for a two-dimensional

system containig N particles interacting with a potential that has a range of 1. The con-

struction of the linked list is done ’backwards’, i.e. to construct the list of particles in the

subcells, one adds the elements to the heads of the list. This is illustrated on the next page.

Assume that we have already assigned the atoms 1 to 17 to the arrays HEAD and LIST .

Now we consider the atom 18. It is located in the cell 16. Thus we make this atom the new

head of the cell 16. The cell 16 already contains the atoms 3,5 and 16.
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Head:

17 9 15 2 8 13 6 12 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

List:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3 4 1 10 5 11 14

Add the atom 18 to the cell 16, where there are already 
atoms 3, 5 and 16: 

7

Head:

17 9 15 2 8 13 6 12 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

List:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3 4 1 10 5 11 14

Add the atom 18 to the cell 16, where there are already 
atoms 3, 5 and 16,
step 1:

- Make the atom 18 point at the head of the cell (I.e. at 
the atom 16)

167

Head:

17 9 15 2 8 13 6 12 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

List:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3 4 1 10 5 11 14

- Make the atom 18 the new head for the cell 16.

16

Add the atom 18 to the cell 16, where there are already 
atoms 3, 5 and 16,
step 2:

7
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If we have periodic boundary conditions, we have to duplicate the cells at the boundary of

the system as shown below.
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6.7 Long range forces

A straightforward evaluation of the long range forces obviously leads to a quadratic scal-

ing. Various algorithms have been developped to reduce the scaling for the calculation of

the electrostatic interactions. Some of them will be discussed later in the course. Some

proposals also exist to reduce the scaling of the van der Waals interactions, but they will

not be covered in this course. Even if such low complexity algorithms are used they have

a large prefactor and so the computational effort for the long range part will always dom-

inate in a simulation of larger systems. Actually because the prefactor is so big, it is not

worthwhile using these low complexity algorithms for medium size systems containing a

few thousand atoms.

Multiple time step MD

The largest possible time step in a MD simulation is related to the time period of a fast

vibrational mode. To get good accuracy the MD step h is typically 1/100-th of this period.

The problem is that large molecules and in particular biomolecules have a very large

spectrum of vibrational frequencies and the period of the slowest frequencies can be larger

by a factor of 1000 than the period of the fastest mode. This means that one would need

100 000 MD steps to observe just a single oszillation of the slowest mode. Since, in

0-124



general, one wants to observe many periods, the number of MD steps is gigantic and the

MD simulation might require an unacceptable amount of computer time.

So-called multiple time step methods can alleviate the problem to a certain extent. In these

methods the forces are subdivided into a long range and a short range part.

F = Flong +Fshort (101)

The dividing line between short and long range is somewhat arbitrary and essentially

dictated by the numerical savings that can be obtained from the resulting scheme. The

basic idea is that the long range part of the forces changes little if the atom on which it is

acting is displaced by a small amount. Such small displacements take place on the time

scale of the fast vibrational modes that have mainly the character of bond stretchings.

Since a bond stretching leads to a strong increase in the energy, the associated atomic

displacements must be small. In a multiple time step scheme one therefore calculates

the expensive long range forces not at every MD step but only let’s say every tenth step,

assuming that the long range forces would be nearly constant during these 10 MD steps.

Multiple time steps can be done in the context of the velocity verlet algorithms in such a

way that time reversibility is retained.
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6.8 Calculating the temperature in a MD simulation

The calculation of the temperature and the pressure are based on the generalized equipar-

tition theorem

〈pk

∂H

∂pk

〉 = kBT (102)

〈qk

∂H

∂qk

〉 = kBT (103)

where H is the Hamiltonian and pk and qk are generalized coordinates and momenta. For

the standard case where the Hamiltonian is a simple quadratic function 1
2M

p2
k we obtain

the well known equipartition principle which says that each quadratic degree of freedom

has an average energy of kBT .

〈 1

2M
p2

k〉= kBT/2 (104)

For an unconstrained system of Nat atoms the velocities of the atoms give rise to 3Nat

quadratic degrees of freedom. Hence one obtains

〈
Nat

∑
i=1

Mi

2
V2

i 〉=
3Nat

2
kBT (105)
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where Vi is the 3-component velocity vector of atom i. Since the expectation value in

Eq. 105 can be calculated as an average value in a MD run, one can determine the tem-

perature from this relation. There is one caveat. For an isolated system, that is interacting

only through internal forces, the velocity of the center of mass is constant due to to the

fact that the sum of all the forces vanishes. So there are three translational degrees of

freedom that will not thermalize and the number of thermal degrees of freedom Nd that

one encounters in the simulation of a periodic solid or liquid with periodic boundary con-

ditions is not 3Nat but 3Nat−3. If one simulates an isolated molecule there are in addition

3 types of rotational motions that can not thermalize because the torque is conserved and

so the number of degrees of freedom Nd is 3Nat − 6. For these reasons one has to do the

following two things if one wants to calculate the temperature. from MD. First of all one

has to make sure that the center of mass of the system is not moving, i.e one has to apply 3

constraints. In the case of an isolated molecule 3 additional constraints have to be applied

by making sure that it is not rotating. Then one can calculate the temperature from the

modified relation

T =
1

kBNd

〈
Nat

∑
i=1

MiV
2
i 〉 (106)

with the appropriate value for Nd .

The temperature calculated from Eq. 106 is in principle a time dependent quantity since

the velocities at time t are used for its evaluation. As a matter of fact this temperature
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will not be constant but fluctuate around some average value after the system has been

equilibrated. The fluctuations are getting smaller when the system gets larger and they

would disappear in the thermodynamic limit of an infinitely large system. This limit is of

course unattainable in a numerical simulation. For a system that is not equilibrated the

temperature can take on completely unrealistic values. In order to equilibrate a system

one has to allow it to do at least a few oszillations, which can be done with some few

thousand MD steps.
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6.9 Calculating the pressure in a MD simulation

If we choose Cartesian coordinates Eq. 103 becomes

1

3
〈

Nat

∑
i=1

Ri ·Ftot
i 〉=−NatkBT (107)

The total forces can be subdivided into intermolecular forces and external forces, Ftot
i =

Fi + Fext
i . The latter represent the interactions of the molecules with the walls of the

container and they are therefore related to the pressure P and volume V :

1

3
〈

Nat

∑
i=1

Ri ·Fext
i 〉=−PV (108)

Hence we obtain

PV = NatkBT +
1

3
〈

Nat

∑
i=1

Ri ·Fi〉 (109)

The expectation value in the above equation is called the internal virial. It can be brought

into a more convenient form that is independent of the origin

∑
i

Ri ·Fi = ∑
i

∑
j 6=i

Ri ·Fi j =
1

2
∑

i
∑
j 6=i

(Ri ·Fi j +R j ·F ji) (110)
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where Fi j is the part of the force acting on atom i that is due to the interaction with atom

j. Because Fi j =−F ji we can further simplify it

∑
i

Ri ·Fi =
1

2
∑

i
∑
j 6=i

Ri j ·Fi j (111)

where Ri j = Ri−R j. The final form is then

PV = NatkBT +
1

3
〈∑

i< j

Ri j ·Fi j〉 (112)

The same remarks that were made for the temperature apply to the pressure. To get a re-

liable pressure the system has to be equilibrated for a sufficiently long time. Nevertheless

the pressure will always oszillate around an average value for a finite system.
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PROJECT: Determination of the melting temperature of silicon by a

molecular dynamics simulation

Physical background: The melting temperature of a material is by definition the tem-

perature where a solid and liquid phase can coexist. This definition can also be used for

the determination of the melting temperature by a molecular dynamics simulation. We

add a piece of crystalline material to a piece of a very hot liquid and we let the system

equilibrate. The equilibration might result in 3 different scenarios. If the crystalline part

is very cold and/or the liquid not very hot the whole system will finally crystallize and the

equilibrium temperature will be below the melting temperature.. If the liquid is extremely

hot and/or the crystalline part rather warm as well, the whole system will melt, resulting in

an equilibrium temperature above the melting temperature. Since melting consumes a lot

of energy and since crystallization frees a lot of energy, there is however a wide range of

initial conditions, where one will finally have a coexistence of the liquid and solid phase.

If the initial configuration was overall hotter just a larger part will after equilibration be

found in the liquid phase than if the initial configuration was overall colder.

In order to model the interaction of the silicon atoms we will use the EDIP force field

(http://www-math.mit.edu/˜bazant/EDIP/). A subroutine bazant lib.f90 that implements

the EDIP potential as well as all the other files needed for this project are avilable at

http:/comphys.unibas.ch/teaching.htm. The bazant subroutine returns the forces needed

within the velocity Verlet algorithm for the propagation of the positions.
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Tasks

• Write a little program that implements the velocity Verlet algorithm (Eq. 98). Test

the program for an harmonic oscillator. Check that the total energy (potential plus

kinetic) is approximately conserved and that that the trajectories are periodic. Ob-

serve the quality of the energy conservation as a function of the size of the time step

h.

• To do the MD simulation for silicon, a MD program md.f90 is provided. This

program contains all the lines needed to read an input file with the atomic positions

and velocities as well as a part that writes intermediate and final results into files

that can then be used to visualize the system using the V Sim software provided

at http://www-drfmc.cea.fr/sp2m/L Sim/V Sim/index.en.html. What is missing are

the few lines that implement the velocity Verlet algorithms. Take over this part form

the previous program for an harmonic oscillator.

• Two input files are provided: hot.dat and cold.dat. Run the MD program for 1000

time steps for one or the two input files and verify that the energy is conserved

reasonably well.
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• Add a few lines to calculate the temperature T of the system using the relation

T =
M

(3Nat−3)kB

Nat

∑
i=1

|vi|2 (113)

where vi is the velocity vector of the i-th silicon atom. The value of the Boltzmann

constant kB in the appropriate units as well as the mass M of the silicon atoms are

contained as parameters in the program.

• Determine the melting temperature. To do this run two different molecular dy-

namics simulation where you use as input files input.dat either the file hot.dat or

cold.dat. The atomic positions of the file cold.dat are shown on the next page, the

positions in the file hot.dat are very similar. In both cases a chunk of liquid silicon

is sandwiched between crystalline silicon as can be seen from the figure on the next

page. The important difference is that the initial velocities of the liquid part are

much higher in the file hot.dat than in the file cold.dat. The file hot.dat represents a

very hot liquid embedded in a crystal, whereas the file cold.dat represents a moder-

ately hot liquid of the same size embedded in the same crystal. After equilibration

the liquid region extends therefore over a much larger volume if hot.dat is used as

the input file than if cold.dat is used as input file. Two representative configurations,

obtained starting from the hot and cold input files, are shown on the following pages
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INITIAL CONFIGURATION

0-134



FINAL CONFIGURATION FORM COLD LIQUID
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FINAL CONFIGURATION FORM HOT LIQUID
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Equilibration is reached after some 100000 time steps. If computer time allows

you should however run for up to 200000 time steps. Since the system is finite the

temperature fluctuates and as a matter of fact these fluctuations are considerable for

the system size considered here containing some 1500 atoms. So the temperature

can only be estimated to within perhaps 50 degrees. Verify that both runs give an

equilibrium temperature that differs by less than this uncertainty. The experimental

melting temperature is around 1680 degrees. This experimental melting tempera-

ture was not used to fit the parameters of the EDIP potential.

Up to this point we have neglected one technical problem. The melting temperature

depends on the pressure. Since the equilibrium volumes at a certain temperature of

the liquid and solid phase are different, the pressure is different in the final config-

urations with a smaller or larger fraction of liquid. A clean solution to this problem

would be to do a MD simulation at constant pressure instead of at constant vol-

ume as we did. Calculating the pressure is not so easy in a system with periodic

boundary conditions and a MD simulation at constant pressure is technically more

demanding than at constant volume. For these reasons and because the effect of

pressure on the melting temperature is not very strong we will simply ignore the

pressure issue.
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Results

For the evolution of the temperature of the two systems you should get a plot which looks

similar to the following one. Such a plot can be obtained for instance with the gnuplot

software.

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 2000

 2100

 0  20000  40000  60000  80000  100000  120000  140000

T
em

pe
ra

tu
re

MD step

cold  liquid
 hot  liquid

0-138



6.10 Calculating the diffusion coefficients in a MD simulation

Diffusion plays a fundamental role in many branches of sciences. It is described by a

macroscopic law that is known as Fick’s law. It states that the flux j of the diffusing

species is proportional to the negative gradient in the concentration c of this species.

j =−D∇c (114)

Even though all the quantities involved are macroscopic, diffusion has a microscopic ori-

gin since it is caused by the thermal motion of the particles. Hence it should be possible

to calculate the diffusion coefficient D with atomistic simulations. In the following it will

be shown how to do this.

We will consider here the simplest case of diffusion which is called self diffusion. One

assumes that all the particles are identical except for some kind of label that allows to keep

track of individual particles, but that does not influence their interactions. Let us assume

that at time t = 0 the tagged species was concentrated at the origin of our coordinate

system. To compute the time evolution, we must combine Fick’s law with the continuity

equation
∂c(r, t)

∂t
+∇ · j(r, t) = 0 (115)
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This gives us then the diffusion equation, a differential equation for c

∂c(r, t)

∂t
−D∇2c(r, t) = 0 (116)

Solving it with the boundary condition

c(r,0) = δ(r) (117)

gives

c(r, t) =
1

(4πDt)3/2
exp

(
− r2

4Dt

)
(118)

We can now calculate the expectation value 〈r2(t)〉 as

〈r2(t)〉=
∫

r2c(r, t)dr (119)

Solving this integral one obtains

∂〈r2(t)〉
∂t

= 6D (120)

This relation was derived by Einstein and establishes the relation between the macroscopic

constant D and the microscopic mean square displacement of a particle. For a particle that
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is initially not at the origin but at the position R0
i the mean square displacement is simply

given by (Ri(t)−R0
i )

2. If we are interested in selfdiffusion where all particles are equal,

we get better statistics if we sum over all particles and we obtain

6D = lim
t→∞

∑
i

1

Natt
(Ri(t)−R0

i )
2 (121)

Care has to be taken when using the above expression in the case of periodic boundary

conditions. Periodic boundary conditions restrain the particle positions to remain in the

finite simulation box. Consequently, the diffusion constant would tend to zero for any long

time simulation. Therefore only particle positions that were not periodized are allowed to

be used in Eq. 121. For this reason one has to introduce two sets of particle positions in

a MD simulation that measures the diffusion coefficients. One periodized set that is used

for the calculation of the interactions and another non-periodized set that is used for the

calculation of the diffusion constant according to Eq. 121.

Alternatively, the displacement from the initial positions Ri(t)−R0
i can be obtained from

an integral over the velocities:

Ri(t)−R0
i =

∫ t

0
Vi(t

′)dt ′ (122)
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Hence

(Ri(t)−R0
i )

2 =
∫ t

0

∫ t

0
Vi(t

′)Vi(t
′′)dt ′dt ′′

= 2

∫ t

0
dt ′Vi(t

′)
∫ t ′

0
dt ′′Vi(t

′′)

The quantity 1
Nat

∑
Nat
i=1 Vi(t

′)Vi(t
′′) is called the velocity autocorrelation function. It mea-

sures the correlation between the velocities of a particle at time t ′ and t ′′. It is an equilib-

rium property of the system and as such it is invariant under a change of the time origin.

1

Nat

Nat

∑
i=1

Vi(t
′)Vi(t

′′) =
1

Nat

Nat

∑
i=1

Vi(t
′− t ′′)Vi(0) (123)

Hence the diffusion coefficient is related to the velocity autocorrelation function in the

following way.

6D = lim
t→∞

∫ t

0

2

Nat
∑

i

Vi(t− t ′)Vi(0)dt ′ (124)

which becomes after taking the limit

6D =
∫ ∞

0

2

Nat
∑

i

Vi(τ)Vi(0)dτ (125)
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6.11 Green-Kubo formulas

Eq. 125 is an example of a so-called Green-Kubo relation. They can be established for

many other transport coefficients and relate those to various correlation functions. The

electrical conductivity σe in the z direction is for example given by

σe =
1

V kB T

∫ ∞

0

1

Nat

Nat

∑
i=1

Jz
i (τ)J

z
i (0)dτ (126)

where the electrical current Ji is the product of the charge of the particle and its velocity,

Ji = qiVi. Jz is the z component of this current. Similar formulas exist for the thermal

conductivity and the shear viscosity.

Exercise [5pt]: Calculation of the velocity-velocity autocorrelation function of silicon:

In the supplementary material you will find the file Si 512.ascii that contains the initial

positions for a 512 atom diamond structure. The file bazant lib contains the silicon force

field. Implement the velocity Verlet algorithm and check that the energy is conserved up to

some small amplitude oszillations. For simplicity all the atomic masses can be put to one

and a reasonable time step is of the order of 1.e-3. Give sufficient energy to the system

such that you can clearly observe some diffusive behaviour when you visualize the MD

trajectory (e.g. with v sim). Run some 10’000 equilibration steps and calculate and plot

then the autocorrelation function during some 40’000 time steps.
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6.12 Entropies and free energies

The free energy F = E−TS is one of the central quantities in thermodynamics. At finite

temperature a stable structure is given by the condition that the free energy is minimal. In

the same way the free energy drives also phase transitions in solids and liquids. The inter-

pretation of these effects is simple. At finite temperature a system is not necessarily in the

macro configuration of the lowest energy, but it might be in another macro configuration

if many more micro states are associated to this configurations. The notion of micro state

refers here to a quantum mechanical state. Let us recall that the free energy F(T,V,N)
depends on the temperature, volume and the number of particles and it is given by

F =−kBT ln

(

∑
i

exp(−Ei/(kBT ))

)
(127)

The quantum mechanical states that we have to consider if we are interested in the ground

state structure are the vibrational states for this ground state configuration. At low tem-

perature the harmonic approximation of the potential energy surface (Eq. 90) is usually

valid. For this approximation it is derived in advanced solid state or electronic structure

courses that the energy levels of a single frequency ωl are given by

El,n = (n+
1

2
)h̄ωl (128)
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where ωl is one of the non-zero frequencies obtained from solving the eigenvalue problem

of Eq. 95. The vibrational state of our system is then specified by the 3Nat − 3 (if the

only zero modes are the 3 translational modes) quantum numbers n1,n2, ...,n3Nat−3 and its

energy is given by

E = h̄

(
(n1 +

1

2
)ω1 +(n2 +

1

2
)ω2 + ...

)
(129)

If we insert Eq. 129 into Eq. 127 we can simplify the expression for the vibrational part

of the free energy by summing all the geometric series:

∑
i

exp(−Ei/kBT ) =

(

∑
n1

exp(−(n1 +
1

2
)

h̄ω1

kBT
)

)(

∑
n2

exp(−(n2 +
1

2
)

h̄ω2

kBT
)

)
....

=

(
exp(− 1

2
h̄ω1/(kBT ))

1− exp(−h̄ω1/(kBT )

)(
exp(− 1

2
h̄ω2/(kBT ))

1− exp(−h̄ω2/(kBT )

)
...

So, within the harmonic approximation, the vibrational free energy is given by

Fvib =−kBT ∑
l

ln

(
exp(− 1

2
h̄ωl/(kBT ))

1− exp(−h̄ωl/(kBT )

)
(130)

where the sum is over all the nonzero frequencies ωl
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At high temperatures the harmonic approximation fails because the system can explore

a larger region around the equilibrium positions where a quadratic approximation of the

potential energy surface is not any more valid. It also fails for systems that have very

low vibrational frequencies. In this case the harmonic approximation would imply that

the system can oszillate a long distance in the direction of the eigenvector associated to

this low frequency, while the energy always increases quadratically. Generally, this is

however not true because for large displacements the quadratic approximation is not any

more valid and other important potential contributions arise. Such systems are also called

strongly anharmonic.

A technique that allows to calculate the free energy without the assumptions of the har-

monic approximation is thermodynamic integration. The problem with determining the

classical free energy is, that it can not be calculated as the time average of some quantity

that depends on the positions or velocities.

F =−kBT ln

(∫
dpNdrN exp(−H (rN ,pN)/(kBT ))

(2πh̄)3NN!

)
(131)

Things are however different for derivatives of the free energy. For instance, it can be seen

from either Eq. 127 or Eq. 131 that

∂

∂T

F

T
=− E

T 2
(132)
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In the classical case the energy expectation value E is given by

E =
1

(2πh̄)3NN!Z

∫
dpNdrNH (rN ,pN)exp(−H (rN ,pN)/(kBT )) (133)

where

Z =
1

(2πh̄)3NN!

∫
dpNdrN exp(−H (rN ,pN)/(kBT )) (134)

E can be calculated for an ergodic system from a MD simulation as E = 〈H (rN ,pN)〉.
Eq. 132 gives thus rise to the simplest thermodynamic integration scheme which allows

us to calculate the change in the free energy F −F0 as we go from an initial temperature

T0 to a final temperature T .

F

T
− F0

T0
=−

∫ T

T0

E(τ)

τ2
dτ (135)

If E is evaluated through a MD simulation, quantum mechanical effects are of course

absent, in contrast to Eq. 130 that contains the quantum mechanical effects. In order to

get accurate results the fluctuations in the temperature have to be small. This requires long

runs for large systems which require a lot of computer time.

In the quantum mechanical framework the equations corresponfing to Eq. 133 and Eq. 134
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are

E =
1

Z
∑

i

Ei exp(−Ei/(kBT )) (136)

and where Z is the partition function

Z = ∑
i

exp(−Ei/(kBT )) (137)

In the thermodynamic integration scheme described above the integration was along a

physical variable, namely the temperature. In a simulation one can also integrate along

non-physical variables. Such variables can for instance smoothly transform one system

into another one. This kind of transformation is for example necessary if one wants to

know how the free energy changes upon the replacement of a side chain by another side

chain in a large molecule. Let us assume that the system with the initial side chain is

described by an interacting potential UA and the system with the final side chain by UB.

We can then introduce a transformation

U(λ) =UA +λ(UB−UA) (138)

Obviously for λ = 0 the system is in the initial state and for λ = 1 in the final state. The

free energy for a intermediate system is given by Eq. 131 except that the Hamiltonian
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depends now on λ

F =−kBT ∑
l

ln

(∫
dpNdrN exp(H (λ,rN ,pN)/(kBT ))

(2πh̄)3NN!

)
(139)

Taking the derivative of the free energy with respect to λ we get

∂F

∂λ
=

∫
dpNdrN ∂U(λ)

∂λ
exp(H (λ,rN ,pN)/(kBT ))∫

dpNdrN exp(H (λ,rN ,pN)
(140)

= 〈∂U(λ)

∂λ
〉 (141)

since H (λ,rN ,pN) = ∑i
1

2M
p2

i +U(λ,rN). 〈 ∂U(λ)
∂λ 〉 is again an average value that can be

obtained from a MD simulation by taking the average of
∂U(λ)

∂λ =UB−UA over all the MD

steps. By integration 〈UB−UA〉 from λ = 0 to λ = 1 one obtains the free energy difference

between the systems described by UA and UB.
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PROJECT: Concentration of point defects in silicon

Physical background: Perfect crystals can not exist at a finite temperature. There will

always be defects, i.e. deviations from the perfect periodic structure. Thermodynamics

can predict the concentration of various defects in crystalline materials. In this project we

will consider the simplest point defect in a crystal, namely the vacancy. One obtains a

vacancy simply be taking an atom out of a perfect crystal. This leads of course to some

relaxations of the surrounding atoms. The concentration Nd of the vacancies is given by

Nd = Nat exp

(
− ∆F

kBT

)
(142)

The difference in the free energy consists of two parts, the difference in energy between

the perfect crystal and the crystal with a defect ∆E and the difference in the vibrational

free energies ∆Fvib between the same two configurations, i.e ∆F = ∆E +∆Fvib. Since we

want to obtain quantities that are quite independent of the size of our simulation system

we subtract from the values obtained for the system (i.e. crystal with defect) only the

values that a perfect crystaline system with Nat−1 atoms would have:

∆E = Esys(N)− Nat −1

Nat

Ecrys(N) (143)

∆Fvib = Fvib,sys(N)− Nat −1

Nat

Fvib,crys(N) (144)
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Tasks

• In the file Si216.ascii (avilable at http:/comphys.unibas.ch/teaching.htm) you can

find the atomic positions for a piece of crystaline silicon in the V Sim format. The

routine provided in the previous project can be used to read in this file. Calculate

the energy of the crystaline system with the Bazant EDIP force field that was also

used in the previous project. Verify that the forces returned by the bazant routine

are virtually zero.

• Take out of the file one atom to obtain a system of 215 silicon atoms with one

vacany. Relax the system by doing a simple stepest descent with energy feedback

or even with a constant stepsize. A good step size is 1/50. Then you can use Eq. 143

to calculate ∆E.

• Next we have to calculate the vibrational free energy. For this purpose you have

to write a subroutine that calculates the Hessian matrix of Eq. 90. Remember that

the dimension of this matrix is 3Nat times 3Nat . The best way to do this is to

take numerical first derivatives of the gradient as returned by bazant. Take a finite

difference formula that uses 4 points (i.e. 2 to the right and 2 to the left). There

are various checks that you should do to verify whether this Hessian matrix was

calculated correctly. It should be symmetric (up to a certain small numerical error)

and it should have 3 zero (up to numerical precision) eigenvalues corresponding
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to the 3 translations of the system with periodic boundary conditions. Set up the

vectors corresponding to translations along the x,y and z directions and check that

multiplying these vectors with the Hessian gives a nearly zero vector. These tests

should be repeated for several values of h. An optimal value of h is obtained when

these conditions are satiesfied with the smallest numerical error.

• Next we have to diagonalize the Hessian matrices for the system with and without

vacancy. This can be done by using the routine jacobi.f90 (provided at

http:/comphys.unibas.ch/teaching.htm) which is taken from numerical recipes. Check

again whether there are 3 nearly zero eigenvalues. The eigenvalues returned by ja-

cobi are not ordered by magnitude and so you have to search for them.

• Once we have the two sets of eigenvalues, we can calculate the two vibrational

free energies according to Eq. 130, excluding the 3 zero frequencies correspond-

ing to translations. Calculating the dimensionless quantities h̄ω
kBT

requires con-

verting all the quantities to a common system of units. Remember that the Hes-

sian as calculated from the gradient returned by the subroutine bazant is given

in units of eV
A2 . The mass of silicon found in Eq. 95 can be taken as 28 nucle-

onic masses. The various conversion factors needed can for instance be found on

http://physics.nist.gov/cuu/constants/energy.html. Finally we can then calculate the

difference in the vibrational free energy from Eq. 144.
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• Plot the total difference in free energy ∆F as a function of temperature up to the

melting temperature of silicon (take 1500 Kelvin). Plot the concentration of vacan-

cies as a function of temperature using Eq. 142. You will get a very low concen-

tration at room temperature, which would imply that even in a macroscopic sample

there is not a single vacancy.
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Exercise [4pt]: Electrostatic energy of ionic materials:

The energy of ionic materials can be approximated by a simple electrostatic model where

the anions and cations have constant charges. The simplest example is sodium chloride

which forms a cubic lattice (see figure below) where the Na’s have a charge qi of minus

one electron and the Cl’s of plus one electron. For simplicity we assume that the distance

between the Na and Cl atoms is one.

Structure of the NaCl crystal. Na’s are shown in red and Cl’s in blue. The Madelung

energy is the electrostatic energy of the large Na atom in the center in the limit where the

cube gets infinitely large.
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Calculating the energy E for a finite crystalline chunk of N atoms (such as shown above)

is trivial

E = ∑
i< j

qiq j

|Ri−R j|
(145)

and by increasing the number of atoms in the summation one would assume that the av-

erage energy per atom e = E/N converges to a well defined bulk value. This is however

not true. The average energy e depends on the shape of the growing cluster even for

very large cluster sizes. To show this effect lets consider three different cluster shapes, a

cube together with the sphere and octahedron inscribed in this cube of sidelength 2n+1.

So the cube contains N = (2n+ 1)3 atoms. First calculate just the electrostatic energy

of the atom at the center of the cube (and therefore also at the center of the sphere and

octahedron). This is the so-called Madelung energy. The sum required for calculating

the electrostatic energy is well known to be conditionally convergent, i.e the final result

depends on the summation order. Observe the convergence (divergence) behaviour with

increasing n for the sphere, the cube and the octahedron. Show that the convergence is

best for volumes that have charge neutrality. The exact value of the Madelung constant

is 1.74756459463318. This value can relatively easily be calculated with an accuracy

of some 10 decimal places in double precision floating point arithmetic if one assumes

that the charges have an extremely small but non-zero extent. In this case only a certain

fraction of the charges is contained in the growing cube that is used for the summation.

Charges at a surface contribute only half to the sum, those on a edge a quarter and those
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at a corner only one eight. Use this modified summation within the cube to calculate the

Madelung constant with high accuracy. Finally calculate the total electrostatic energy for

a cube and an octahedron both containing about one million atoms. An octahedron has

only (111) surfaces. So its 8 surfaces are perpendicular to the eight vectors (±1,±1,±1).
These surfaces are either purely Na or purely Cl terminated. Check with the v sim visual-

ization software whether you have correctly generated the octahedral shape.
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7 Treatment of electrostatic and gravitational long range

potentials

The calculation of the energy and forces coming from long range electrostatic forces

(monopole, dipole interaction etc) can be numerically expensive. Let us concentrate on

the slowest decaying monopole interaction. The electrostatic problem is equivalent to a

gravitational problem. Because the gravitational problem lends itself more easily to a

pictorial description of the algorithm, we will consider the gravitational problem.

E = ∑
i< j

mim j

|ri− r j|
(146)

Trivial algorithm

e=0.

do j=1,n

do i=1,j-1

rij=sqrt( (x(i)-x(j))**2 + (y(i)-y(j))**2 + (z(i)-z(j))**2 )

e=e+M(i)*M(j)/rij

enddo

enddo

Quadratic scaling:

TCPU ∝ N2 (147)
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7.1 The Barnes Hut algorithm

TCPU ∝ N log(N) (148)

Central idea: From far away, a bunch of stars looks like a single larger star

=

Observation
      Point

  Source
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Step 1: Subdivide system and generate tree
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12

The initial box is chosen such that it contains the entire system. This initial box is then

successively subdivided into sub-boxes, 4 in the 2-dim case, 8 in the 3-dim case. This

subdivision is stopped when the sub-box contains a single star.
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Step 2: Combine stars into super-stars, super-super-stars, ..., galaxies

11

  1 2 3 4

5
6

7

8

 9

10
12

  1 4
6

7

10
12

11

Super-stars are formed out of individual stars contained in the boxes at the penultimate

subdivision level. The mass of a super-star equals the sum of the masses of its constituent

stars and it is centered at their center of mass. In the same way second order super-stars

(super-super-stars) are formed out of super-stars, third order super-stars out of second

order super-stars and so on.
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Final redundant data structure in tree form

1,2,3,5,7
4,6,8,9

10

1
2,3,5

7 4
6

8,9

2
3

5
8  9

11,12

11
12

The final redundant data structure contains the positions and masses of the original stars

as well as the positions and masses of all the super-stars of various order.
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Step 3: Calculate forces

A distance d is introduced. The interactions of the red star with all the other green stars

within a box of size 2d are calculated exactly. The interactions with the additional stars

that are within a box of size 4d are not calculated exactly but are taken into account as

interactions with the super-stars formed out of these additional stars. In the largest box

shown below only the interactions of the red star with the second order super-stars are

used.

2d

4d

8d

stars

super−stars

super−super−stars
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Since the size of the boxes increases exponentially, there are of the order of log(n) types

of interaction regions and each region contains a few super-stars of a certain order. Hence

one has to sum log(n) terms to take into account the interaction of one fixed star with all

the other n−1 stars. The total computational effort is consequently c n log(n), where c is

the prefactor. The interaction to be considered for one particular (red) star of our previous

example are shown below, both in real space and within the tree structure.

11

  1 2 3 4

5
6

7

8

 9

10

1,2,3,5,7
4,6,8,9

10

1
2,3,5

7 4
6

8,9

2
3

5
8  9

12

11,12

11
12

If one wants to obtain higher accuracy, one has to increase the distance d. This increases

of course the prefactor c since more interactions will be calculated directly.
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7.2 The fast multipole method

The fast multipole method (FMM) goes one step further than the Barnes Hut method.

It uses not only the fact that the potential at an observation point does not depend on

the details of a charge/mass source distribution far away, but also on the fact that the

potential of such a charge/mass distribution is only slowly varying in the neighborhood of

an observation point.

Observation
      Point

  Source

=

s

Potential
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Even though both methods are hierarchical methods, there are differences. FMM is based

on a hierarchy of cells that are combined into larger cells, whereas BH combines stars

(particles) into super-stars, super-super-stars, etc. The FMM hierarchy is shown below.

The cells at the highest (resolution) level (level 3 in the figure below) can contain more

than 1 particle.

Level 3Level 2Level 1

FMM also uses redundant data structures. For each cell on any level of the hierarchy, the

following 2 items are stored:
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• The multipole coefficients Ml,m of the charge distribution consisting of particles

with charge mi:

Ml,m = ∑
i

mis
l
iY
∗
l,m(ŝ) (149)

where s is the position of the particle relative to the cell under consideration. How

many multipoles are stored, depends on the precision that has to be achieved. The

potential V is related to Ml,m by

Vmultipole(r) = ∑
l

4π

(2l +1) rl+1

m=l

∑
m=−l

Ml,m Yl,m(r̂) (150)

• The coefficients Ll,m of the local Taylor expansion of the potential

VTaylor(r) = ∑
l

m=l

∑
m=−l

rlLl,m Yl,m(r̂) (151)

The conventions of Jackson (1975) were used for the spherical harmonics and multipoles.

h denotes in the following the length of the cells at a certain level of subdivision.

FMM uses the following mathematical transformations. The origin is thereby always the

center of the cell.
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• COMBINE: 8 multipole coefficients Mh
l,m from a high level are combined to obtain

the multipole coefficient M2h
l,m of the parent cell. This requires to first shift the

multipoles into the origin of the parent cell and then to add them. The shifted

multipoles M
′h
l,m are given by

M
′h
l′ ,m′ = ∑

l,m

T MM
l′,m′,l,mMh

l,m (152)

T MM
l′,m′,l,m = 4π

(−t)l′−1(2l′+1)

2(l+1)(2(l′− l)+1)

Y ∗
l−l′ ,m−m′(t̂)a′

l′−l,m′−m
al,m

al′,m′
(153)

al,m = (−1)l+m 2
√

l +1√
4m (l +m)! (l−m)!

(154)

where t is the translation vector between the 2 origins.

M2h
l,m = ∑

8 multipoles

f rom children

M
′h
l′,m′ (155)
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• FLIP: The coefficients Mh
l,m are transformed into the coefficients Lh

l,m

Lh
l′,m′ = ∑

l,m

T LM
l′,m′,l,mMh

l,m (156)

T LM
l′,m′,l,m = 4π

(−1)l+mY ∗
l+l′ ,m−m′(t̂)al,mal′,m′

t l′+l+1(2l +1)(2l′+ l)al′+l,m′−m

(157)

where t is the position of the origin of the Taylor expansion relative to the origin of

the multipole.

• SHIFT: The local Taylor expansion coefficients Lh
l,m of 8 children are generated

from the L2h
l,m of the parent cell.

Lh
l′,m′ = ∑

l,m

T LL
l′,m′,l,mL2h

l,m (158)

T LL
l′,m′,l,m = 4π

t l−l′Yl−l′ ,m′−m(t̂)al′,m′al−l′′ ,m−m′

(2l′+1)(2(l− l′)+1)al,m
(159)

t is again the translation vector between the 2 origins.
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The FMM algorithm uses the following classification in the calculation of the interactions:

• A cell is near (N) to a reference cell (R) if it shares with this cell a side, edge or

corner.

• A cell is interactive (I) to a reference cell (R) if both have parents that were near

and if they are themselves not near

• A cell is far (F) in all other cases

The situation is illustrated below:
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The FMM algorithm goes now as follows:

• Assign the particles to the cells at the finest level and calculate the multipole expan-

sion coefficients Ml,m on the finest level.

• Go from the finest level down to the coarsest level and use the COMBINE operation

to generate the multipole expansion coefficients for all the bigger cells

• Go back from the coarsest level to the finest level. On each level calculate the

coefficients Ll,m that are due to interactions with INTERACTIVE cells using the

FLIP operation. Use the SHIFT operation to obtain the Ll,m’s on the finer scales

from the previously obtained Ll,m on the coarser scales. The total Ll,m’s on the

finest level are obtained by recursively summing both contributions from SHIFT

and FLIP operations each level.

• Using the Taylor expansion, calculate on the finest level the potential/forces at the

position of all the particles. This represents the potential/forces of all the particles

in cells that are not NEAR cells on the finest level. The influence of the NEAR

cells at the finest level is obtained by direct summation of the contributions of all

the particles in the NEAR cells.

The most important workload is be done at the level of the finest cells. The work at the

other levels is small compared to this one ( e.g. 1/8th at the second finest level). Hence

the FMM algorithm exhibits linear scaling with respect to the number of the finest cells.
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Exercise [2pt]: Calculate the monopole, dipole and quadrupole moments for the tetra-

hedral, octohedral and cubical arrangements of point charges shown below. Red spheres

represent a positive charge of 1 and green spheres a negative charge of -1.

Each polyhedron is centered at the origin and has an edge length of one. A tetrahedron

can be obtained by filling four non-neighboring corners of a cube, and an octrahedron

can be constructed by filling the six faces. The monopole and the dipole moments for a

system of point charges are defined as,

Q = ∑
k

qk ; p = ∑
k

qkrk (160)
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where qk and rk stand for the value and position of the kth point charge, respectively. The

quadrupole moment tensor is given by the following equation.

Qi, j = ∑
k

qk

(
3ri,kr j,k−δi, j|rk|

)
(161)

The indices i and j run over the x, y and z components, so we can write for example the

xx− or xy−element.

Qx,x = ∑
k

qk

(
3x2

k − r2
k

)
; Qx,y = ∑

k

qk (3xkyk) (162)

These moments correspond to the multipole coefficients Ml,m of equation 149 expressed

with real-valued linear combinations of spherical harmonics.

Show that the value of the dipole is independent of the choice of the origin if the monopole

of the system is zero.
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7.3 Analytical methods for the solution of Poisson’s equation

Poisson’s equation establishes the relation between a charge density ρ and its resulting

potential V

∇2V (r) =−4πρ(r) (163)

For non-periodic systems such as atoms and molecules, free boundary conditions where

the potential vanishes at infinity are the appropriate ones. Formally the solution can then

be written as

V (r) =
∫

ρ(r′)
|r− r′|dr′ (164)

The numerical solution of Poissons equation is frequently based on the differential form

(Eq. 163) rather than the integral form (Eq. 164).

Poisson’s equation can be solved analytically in a few cases that are also relevant for

numerical methods:

• The trivial case of a delta function with free boundary conditions:

ρ(r′) = δ(r′) (165)

V (r) =
1

r
(166)
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• For a spherically Gaussian charge distribution

ρ(r′) =
1

(a
√

π)3
exp(−(r′/a)2) (167)

the potential satisfying free boundary conditions is related to the error function er f :

V (r) =
er f (r/a)

r
(168)

• Under periodic boundary conditions a plane wave charge distribution

ρ(r′) = exp(IK · r′) (169)

gives a periodic potential

V (r) =
4π

K2
exp(IK · r) (170)

Exercise [1pt]: Show that evaluating the potential
er f (r/a)

r
at the origin, r = 0 gives

2

a
√

π
(171)

Remainder: er f (x) = 2√
π

∫ x
0 exp(−t2)dt
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7.4 Plane wave techniques

Using the above mentioned analytical properties of plane waves, the solution of Poisson’s

equation under periodic boundary conditions is simple. We have to know the values of

the continuous charge distribution ρ(r′) on an equally spaced real space grid. The grid

has to be dense enough such that the variation of the charge density between neighboring

grid points is small. This real space data set can be transformed into Fourier space by

using the fast Fourier transformation. If there are N 3-dim grid points the cost of the

Fast Fourier transformation is of the order of N log2(N). Once we have the Fourier space

representation of ρ
ρ(r) = ∑

k

ck exp(Ik · r) (172)

the Fourier space representation of the potential is

V (r) = ∑
k

4πck

k2
exp(Ik · r) (173)

Under periodic boundary conditions it is necessary that the system has no net charge, i.e.

that c0 = 0. The real space values of the potential on the grid are obtained by using a

backward Fourier transformation.
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7.5 Ewald techniques

The Ewald method is a standard method to calculate the energy and forces for a system

of charged point particles under periodic boundary conditions. Compared to the case of

free boundary conditions, we have here an additional difficulty. Because of the long range

character of the forces, we would have to sum not only the interactions among particles in

the same box, but also the interactions between particles in the box and the ghost particles

in the periodic images of the box. As we have seen, periodic images can be handled

naturally and efficiently by plane wave techniques. The problem is that a charge density

that is a sum of delta functions can not be represented by plane waves. The basic idea of

the Ewald technique is to introduce two charge densities that have the property to sum up

to the correct charge density composed of delta functions. The first charge density ρr(r)
consists of a sum of localized charge densities ρloc

j (r). Each localized charge density

is the sum of the original delta function and a Gaussian charge distribution of opposite

charge. This is visualized in the upper panel of the next figure. Each ρloc
j (r) is shown by

a different color. The delta function is visualized by an arrow.

ρr(r) = ∑
j

ρloc
j (r) = ∑

j

Z j

(
δ(r−R j)−

1

(a
√

π)3
exp(−(|r−R j|/a)2)

)
(174)

Because the total charge of each localized charge term vanishes, there is no monopole and

by symmetry all the higher multipoles vanish as well. Consequently the potential arising
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from one ρloc
j (r) decays exponentially. It is easy to show that the total potential is given

by
Vr(r) = ∑

j

Z j

1− er f (|r−R j|/a)

|r−R j|
= ∑

j

Z j

er f c(|r−R j|/a)

|r−R j|
(175)

Consequently Vr can efficiently be evaluated in real space. If we want to calculate Vr(r)
at a certain point r we do not have to evaluate all terms j in the above sum (Eq.175), but

only those that arise from localized charge distributions that are close to r on the scale of

a. Because of the periodic boundary conditions we have to include in the sum of Eq. 175

not only terms coming from localized charge distributions within the cell, but also terms

arising from close by periodic image charges.

Exercise [1pt]: Determine numerically the distance |r−R j|/a where the potential of

Eq. 175, has decayed to 1.d-14.

The second charge density ρ f (r) is just the sum of the compensating Gaussians and is

shown in the lower panel of the next Figure. It is a smooth function and it can therefore

be represented with high accuracy by a modest number of plane waves. In addition the

Fourier transformation of a Gaussian can be calculated analytically,

1

Vol

∫
1

(a
√

π)3
exp(−(r/a)2)exp(−Ik · r) =

1

Vol

∫ ∞

0
dr

∫ π

0
dθ

2π

(a
√

π)3
r2 exp(−(r/a)2)exp(−I k r cos(θ)) =

1

Vol
exp

(
−
(

ka

2

)2
)
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ρr

ρ f
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Hence the potential Vf arising from ρ f is

Vf (r) =
1

Vol
∑
k 6=0

4π

k2

(

∑
j

Z j exp(I k · (r−R j))

)
exp

(
−
(

ka

2

)2
)

(176)

We have now calculated the potential V (r) = Vr(r) +Vf (r) arising from a set of point

particles under periodic boundary conditions. In many applications we want however

to calculate energies and forces. In this context we have to take into account that point

particles are not interacting with each self, i.e the total energy is given by

E =
1

2
∑
i6= j

Zi Z j

|Ri−R j|
(177)

Evaluating the potential at all the positions Ri would however give

1

2

(

∑
i

Zi(Vr(Ri)+Vf (Ri))

)
=

1

2
∑
i, j

Zi Z j

|Ri−R j|
(178)

Taking out the self-interaction in the real space part (Eq. 175) is simple and one obtains

Er =
1

2
∑

j
∑
i6= j

ZiZ j

er f c(|Ri−R j|/a)

|Ri−R j|
(179)
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The sum over j in Eq. 179 runs over all localized charges in the system, the sum over i

over charges interacting with charge j. Remember that these interacting charges can be

periodic image charges. Taking the self-interaction out of the Fourier space part (Eq. 176)

is also not very difficult. We have just to subtract the potential of a Gaussian charge

distribution evaluated at the origin (cf. Eq. 171). The Fourier space contribution is thus

given by

E f =
1

2

1

Vol
∑
k 6=0

4π

k2

(

∑
i, j

ZiZ j exp(I k · (Ri−R j))

)
exp

(
−
(

ka

2

)2
)
− 1

a
√

π
∑

i

Z2
i

=
1

2

1

Vol
∑
k 6=0

4π

k2
|S(k)|2 exp

(
−
(

ka

2

)2
)
− 1

a
√

π
∑

i

Z2
i (180)

Where S(k) is the structure factor S(k) = ∑i Zi exp(−I k · (Ri)). The Ewald method for

the energy consists thus of calculating the energy E = Er +E f of Eq. 177 as a sum of a

real space term Er (Eq. 179) and a Fourier space term E f (Eq. 180). A similar formula

can be derived for the forces.

Let us now discuss the scaling properties of the Ewald method with respect to the number

of charges N in the system and the relation to the choice of the width a of the Gaussians.

Let us assume that the average number of charges per unit volume ρc = N/Vol remains

constant while we are increasing the number of charged point particles. The real space
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part Er has a linear scaling. For each charge we have to calculate all the interactions

with charges that are localized within a few a’s. Consequently there are of the order

of ρca3 such charges and the total scaling is Nρca3. In the Fourier space part, E f , the

number of plane waves we have to include for an accurate representation of the Gaussian

is proportional to Vol/a3 = N/(ρca3). For each plane wave k we have to calculate the

structure factor S(k). Hence the overall scaling is N2/(ρca3). If we enlarge N without

modifying a, the Fourier space sum of E f will finally dominate the computational cost

because of its N2 scaling. We can however enlarge a as we increase N. If a3 ∝
√

N then

the computational cost for both E f and Er grows as N3/2.

The Ewald technique achieves thus two remarkable things. It incorporates at virtually

no extra cost all the interactions with image charges under periodic boundary conditions.

In addition it allows us to evaluate the energy sum of Eq. 177 with a scaling that is less

than the trivial N2 scaling. Even though the scaling is not quite as good as in other fast

methods the Ewald method has a small prefactor and beats usually other methods for small

and medium size systems.
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7.6 Particle-Particle Particle-Mesh (P3M) methods

The P3M is another method to calculate the electrostatic energy (Eq. 177) of a system of

charged particles under periodic boundary conditions. As in the Ewald method the charge

is represented as the sum of a smooth part and localized charges. The expressions for this

later part, that is treated in real space, are as a matter of fact identical to the expressions

used in the Ewald method. What differs is how one treats the Fourier space potential of

Eq. 176. This part is not calculated analytically but numerically in the following way. The

smooth charge distribution ρ f is evaluated on a sufficiently dense grid. Then the potential

Vf is calculated on the same grid by using the plane wave techniques described previously.

Finally the potential at the positions of the point charges R j is calculated by interpolation

methods from the values on the grid. Consequently E f is given by

E f =
1

2
∑

i

ZiVf (Ri)−
1

a
√

π
∑

i

Z2
i (181)

As in the Ewald method the last term is needed to cancel self-interactions.

Compared to the Ewald method the scaling of the Fourier space part is more favorable:

N log2(N)/(ρca3) instead of N2/(ρca3). Because of this favorable scaling of the Fourier

space part, it is not necessary to enlarge a as the system grows larger and the overall

scaling is N log2(N). The prefactor is however larger than in the Ewald method.
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7.7 Multigrid for the solution of Poisson’s equation

Multigrid is the standard method for solving Poisson’s equation in a finite difference

scheme. For simplicity we will only consider the 1-dim Poisson equation

∂2

∂x2
V (x) =−4πρ(x) (182)

Using the simplest discretization of the second derivative Eq. 182 becomes

Vi+1−2Vi +Vi−1 =−4πh2ρi (183)

Eq. 183 is a linear system of equations
Ax = y ; x =V , y = ρ (184)

Under periodic boundary conditions, the matrix A is given by
/ \

| -2 1 1 |

| 1 -2 1 |

| 1 -2 1 |

| ... |

| ... |

| ... |

| 1 -2 1 |

| 1 -2 1 |

| 1 1 -2 |

\ /
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The solution of a linear system of equations is equivalent to finding the stationary points

of

xT (
1

2
Ax− y) (185)

as can easily be seen by taking the partial derivatives of Eq 185 with respect to all the

components of x. Differentiating once more gives the Hessian matrix which turns out to

be A. It can be shown that the conditioning number grows quadratically as a function

of the lateral dimensions of the system divided by the grid resolution. Hence either very

large systems or very high grid resolutions lead to conditioning problems.

The elementary local iterative solution methods for Eq. 183 are

• The steepest descent method discussed previously

gi =Vi+1−2Vi +Vi−1 +4πh2ρi (186)

Vi =Vi +αgi (187)

Exercise [2pt]: Find a discrete variational quantity ( a function of all the Vi’s) that

has the property that if one zeroes its gradient with respect to the Vi’s, one ob-

tains Eq. 183. Show that this quantity has to be maximized and not minimized to
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obtain the physically reasonable solution of Poisson’s equation. Hint: The func-

tional derivative of
∫
( 1

2
( ∂V

∂x
)2 +4πV (x)ρ(x))dx gives the continuous Poisson equa-

tion 182.

• The Jacobi relaxation (which is equivalent to a steepest descent with α = 1/2 ).

Ṽi =
1

2
(Vi+1 +Vi−1)+2πh2ρi (188)

Vi = Ṽi (189)

• The Gauss-Seidel relaxation

Vi =
1

2
(Vi+1 +Vi−1)+2πh2ρi (190)

• Red-black Gauss-Seidel relaxation

Vi =
1

2
(Vi+1 +Vi−1)+2πh2ρi for all even i (191)

Vi =
1

2
(Vi+1 +Vi−1)+2πh2ρi for all odd i (192)
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The three relaxation methods were written down in programming style, meaning that each

equation corresponds to a loop. Hence one works on all the indices of the first equation

before proceeding to the next. Thus the difference between Jacobi, Gauss-Seidel and red-

black Gauss-Seidel is a very subtle one. In the Jacobi method the solution is updated only

after all the old values were used for the calculation of Ṽ . In the Gauss-Seidel method

the new values are immediately used for the calculation of further new values. Hence

relaxations where the index is running from 1 to n are not equivalent to relaxations where

the index is running from n to 1, even though one relaxation type is in generally not better

than the other. In the red-black Gauss-Seidel all the even points are first updated using the

information of the odd points and then the odd point are updated using the information of

the already updated even points. The red-black Gauss-Seidel iteration is usually the most

efficient one for reducing error components that have a wavelength that is comparable to

the grid spacing. All the methods fail however badly for error components that have a

wavelength much larger than the grid spacing. The failure of the steepest descent method

was studied before. The failure of the relaxation methods is easy to understand. For small

grid spacings h the iterations have all the form

Vi =
1

2
(Vi+1 +Vi−1) (193)

respectively

Ṽi =
1

2
(Vi+1 +Vi−1) (194)
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The value in the center is the average of the values to the right and to the left. On small

scales any smooth function is to first order a linear function and taking the average does

not modify a linear function. Hence the convergence becomes very slow for small h. The

effect is demonstrated below on a grid of 32 grid points. The red curve represents the

original data Vi and the green curve the smoothed data set Ṽi =
1
2
(Vi+1 +Vi−1). For data

that are slowly varying over the grid spacing h the smoothed curve is very similar to the

input curve, where as for a non-smooth curve both curves differ significantly.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  5  10  15  20  25  30

input
smoothed

-3e-14

-2.5e-14

-2e-14

-1.5e-14

-1e-14

-5e-15

 0

 5e-15

 1e-14

 0  5  10  15  20  25  30

input
smoothed

0-187



What happens therefore if a relaxation (or steepest descent) method is used to solve Pois-

son’s equation with a small h is the following. During the first iteration the convergence

is fast, since the short wavelength components, of the error are eliminated. These short

wavelength components have a wavelength λ≈ 2h. As soon as the remaining long wave-

length components have to be eliminated the convergence becomes extremely slow. The

basic idea of multigrid is to eliminate these longer wavelength error components on a

hierarchy of grids whose spacing h matches the wavelengths under attack. The funda-

mental equation that allows for such an approach is the error correction equation. If we

have an approximate solution V then the difference ∆V between the exact solution and the

approximate solution V fulfills as well a Poisson equation

∇2∆V (r) =−∇2V −4πρ(r) (195)

since the right hand side, which is called the residue, can again be considered as some

charge density. Using these two ingredients we obtain the 2-grid algorithm:

1. Do a few (2 to 5) relaxations on the original grid. This will give an approximate

solution V h
i and a residue

Rh
i =−

1

h2

(
V h

i+1−2V h
i +V h

i−1

)
−4πρi (196)

2. Transfer the residue Rh
i to a grid with double spacing 2h and let’s call this residue
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R2h
i . Since we have to cut the number of data into half, the simplest way is just to

select every second data point, i.e R2h
i = Rh

2i This transfer from a fine to a coarse

grid is called restriction.

3. Find the solution on the coarse grid for a Poisson equation where the charge density

is given by R2h
i , i.e. solve

V 2h
i+1−2V 2h

i +V 2h
i−1 = (2 h)2R2h

i (197)

V 2h
i represents the correction ∆V (r) of Eq. 195.

4. Bring V 2h
i back onto the fine grid and add it to V h

i The process of calculating a

quantity that was defined on a coarse grid on a fine grid is called prolongation. The

simplest prolongation scheme is to use on all the even grid points of the fine grid

the values on the coarse grid and to generate the values on the odd grid points by

interpolation from the neighboring even grid points.

5. Unfortunately the potential that we have now obtained by adding V h
i and the pro-

longation of V 2h
i on the fine grid is not yet the final solution. the reason for this

is that the prolongation step introduces some small short wavelength errors. These

errors can be rapidly eliminated by a few (2 or 3) additional relaxation steps on the

fine grid.
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We left it open how to find the solution V 2h
i on the coarse grid. Obviously we can again

use exactly the same procedure that we used for the fine grid by going to an grid with an

even larger grid spacing of 4h. Doing this recursively until we arrive at a grid with a very

small number of grid points, where the problem can easily be solved exactly, results in the

multigrid V cycle illustrated below.

h

2h

4h

8h

RESTRICT

RESTRICT

RESTRICT

PROLONGATE

PROLONGATE

PROLONGATE

V

V

V

h

4h

2h

SOLVE EXACTLY

RELAX

RELAX

RELAX

RELAX

RELAX

RELAX

+

+

+

Exercise [1pt]: What is the complexity (i.e. the scaling of the numerical effort with respect

to the number of grid points) of the multigrid V cycle if we neglect the cost of solving the

equation exactly at some very coarse grid level and if we use a fixed number of relaxation

on each grid level?
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PROJECT: A 1-dim multigrid program

The multigrid method can be applied to problems in one, two, three and more dimensions.

Here we will study its behaviour for the simplest 1-dim case with periodic boundary con-

ditions. For simplicity the length of the periodic volume can be taken to be one and the

charge density ρ is a sine function ρ(x) = sin(x2π). Find the analytical solution for the po-

tential. Is the potential unique? Next, solve the problem numerically using the multigrid

method

• Discretize the interval with 256 grid points.

• Take random numbers as your initial guess for the potential.

• Write a subroutine that performs Gaus-Seidel relaxations and another subroutine

that calculates the residue(Eq. 196). Never set up the matrix of Eq. 184 explicitly

to calculate these quantities.

• Do a few Gaus-Seidel relaxations on the 256 grid. Monitor graphically how the

convergence rate slows down and calculate the residue after each Gaus-Seidel re-

laxation.

• Implement next a two grid method. Bring the residue from the 256 point grid to

a 128 point grid by the restriction procedure described in the lecture notes and
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do Gaus-Seidel relaxation on the 128 grid to solve Equation 195 approximately.

Observe again how the convergence rate slows down when you are doing Gaus-

Seidel relaxations on the 128 point grid. Once the convergence rate saturates, add

the correction to the potential calculated on the 128 grid to the solution on the

256 grid. Before adding the two quantities on the fine grid use the prolongation

procedure described in the lecture notes with a simple linear interpolation to bring

the correction to the fine grid. Do 5 more Gaus-Seidel relaxations on the 256 grid

and look by how much the residue was reduced by this excursion to the 128 grid.

• Replace the Gaus-Seidel relaxation on each grid level by a red-black Gauss-Seidel

relaxation and and replace the simple restriction scheme by the full weightening

scheme where

R2h
i =

1

4
Rh

2i−1 +
1

2
Rh

2i +
1

4
Rh

2i+1 (198)

• Now implement a true multigrid method where you have on the coarsest grid level

only 4 grid points. A major difficulty is to find convenient data structures that

hold the various quantities on the different grids. Since in the one dimensional case

memory is not problematic you can choose some simple but wasteful data structures

(where for instance you use the same amount of memory for each grid level). You

are however also invited to design some more efficient data structures.
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• Determine how many multigrid cycles you need to reduce the norm of the residue

by 6 orders of magnitude both for the combination simple-restriction/Gaus-Seidel

and full-weightening/red-black-Gaus-Seidel. How many iterations would you need

to obtain the same error reduction if you performed only Gaus-Seidel relaxations

on the 256 grid?

• Even if the procedure has converged (i.e. if the residue is very small), you have

only an approximation to the analytical solution. This comes from the fact that the

second derivative operator was replaced by a finite difference formula. Determine

the difference between your numerical solution and the analytical solution.

0-193



PROJECT: Finite Difference Method for solving Laplace Equation

Introduction

The electric potential V in the absence of any charge, satisfies the Laplace equation. In a

two-dimensional problem, the corresponding two-dimensional Laplace equation is

∇2V (x,y)≡ ∂2V (x,y)

∂x2
+

∂2V (x,y)

∂y2
= 0 (199)

for all real (x,y) in region S of a plane. First, consider a region S that composed of all the

points (x,y) so that 0≤ x ≤ a and 0≤ y≤ b. The boundary condition for this problem is

chosen to be a Dirichlet boundary condition, e.g., for all the points (x,y) on the boundary

C ≡ ∂S of S, one has {
V (x,0) =V 0,
V (x,b) =V (0,y) =V (a,y) = 0.

(200)

For simplicity, we choose a = 1 and V 0 = 1, so the analytic solution as b→ ∞ is

V (x,y) =
2

π
tan−1

(
sinπx

sinhπy

)
(201)

Next, we limit the region S so that 1≤ y≤ 2, the solution (201) remains unchanged while
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the corresponding boundary condition on C, the boundary of S, is given by





V (x,1) = 2
π tan−1

(
sinπx
sinhπ

)
,

V (x,2) = 2
π tan−1

(
sinπx

sinh2π

)
,

V (0,y) =V (1,y) = 0.

(202)

The purpose of this project is to numerically solve the equation (199) on the region S so

that 0≤ x≤ 1 and 1≤ y≤ 2 with the Dirichlet boundary condition (202). The numerical

solution is then compared to the exact solution (201). An analysis for the error of the

numerical solution is also requested.

To solve equation 199 numerically, one first discretes it using the finite difference method.

One covers S with an equidistant grid with grid spacing h along both sides of S. In other

words, each of the intervals [0,1] (for x) and [1,2] (for y) is divided into N sub-intervals

with the length

h =
1

N
. (203)

The potential V (x,y) is then calculated on the grid points using the relaxation method. The

potential V (x,y) at a grid point with coordinates x = ih and y = jh, is referred to as Vi, j . In

the relaxation method as mentioned for one-dimensional problem in the lecture notes, the
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Figure 2: Exact solution of the equation (199) on the region S : x ∈ [0,1],y ∈ [1,2]

potential at each grid point is obtained from the average Ṽi, j of the potential values over

the corresponding neighbors. To this aim the ordinary Gauss-Seidel relaxation

Vi, j = Ṽi, j (204)

(or the red-black Gauss-Seidel) is iterated until the potential at each grid point converges

to some value. Using more neighbors in the averaging Ṽi, j procedure, gives more accurate

results. In this project we will use three different types of averages. To speedup the
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convergence, one can replace the (red-black) Gauss-Seidel relaxation with the successive

over-relaxation

Vi, j = ωṼi, j +(1−ω)Vi, j (205)

with a relaxation factor of ω = 2/(1+ sinπh) (note that the Gauss-Seidel relaxation (204)

corresponds to ω = 1).

Finally, the numerical solution obtained will be compared with the exact solution (201)

by analyzing the norm of its error defined by

||e||=
√

1

N2 ∑
i, j

[
V

(calculated)
i, j −V

(exact)
i, j

]2

. (206)

Detailed tasks

1. Show, using a Taylor expansion, that we can discretize the Laplace equation (199)

on the grid to obtain the approximate potential

Vi, j = Ṽi, j +O(h4)

where the average is obtained from the ’cross’ average

Ṽi, j =V+
i, j =

1

4
(Vi+1, j +Vi−1, j +Vi, j+1 +Vi, j−1) . (207)
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2. Write your code to do successive over relaxation using the ’cross’ average with

random initial guess to calculate the potential V inside S. Do the error analysis, i.e.,

using the formula (206), plot on a log-log scale ||e|| as a function of h and find the

dependence of ||e|| on h. Note that this global error is two orders of magnitude

smaller than the local error obtained from the Taylor expansion in which the exact

values of the function at the adjoining sites are known.

3. Repeat the steps 1 and 2 with the ’corner’ average

Ṽi, j =V×i, j =
1

4
(Vi+1, j+1 +Vi−1, j+1 +Vi+1, j−1 +Vi−1, j−1) (208)

and compare the error ||e|| of the method using the ’corner’ formula (208) with that

using the ’cross’ formula (207).

4. We now use a certain linear combination of two averages above

Ṽi, j =V ⋄i, j =
4

5
V+

i, j +
1

5
V×i, j . (209)

Modify your code to implement the combination (209), calculate the error ||e||, and

show (quantitatively) that this combination improves the accuracy of the numerical

calculations, both by a Taylor expansion method and by actual numerical calcula-

tions.
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5. Effects of the finite difference approximation for the boundary C. The boundary C

used in the above problem can be exactly represented by the ’square’ grid chosen.

In a problem with a different geometry of C, for example, a circle, there are errors

coming from the fact that C can not be exactly represented by the ’square’ grid so

one needs another grid.

Consider the electric potential V within two concentric conducting cylinders with

radii a and b (a < b) and very large lengths. The potential V is kept to be V1 on

the inner cylinder and V2 on the outer cylinder. Due to the translation symmetry

along the axis of the two cylinders, chosen to be the z axis, the problem can be

considered as a two-dimensional problem on the xy plane. For a = 1/2,b = 1 and

V1 = 1,V2 = 0, the exact solution of the potential is then

V (x,y) =− 1

ln2
ln
√

x2 + y2. (210)

For this problem, you are asked to

• Change the boundary condition to reflect the new geometry of the problem

and do the relaxation for the sites in the region 1/2 <
√

x2 + y2 < 1. Note

that with the symmetry of the geometry, you can relax only one quarter of the

coordinate plane with appropriate treatment for x = 0 and y = 0. Do the error
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Figure 3: The cross section of the two cylinders, which is represented on the xy plane.

analysis for three different averages (’corner’, ’cross’, and ’combination’).

Explain the result for the error obtained.

• Discrete the Laplace equation in polar coordinates system and solve the prob-

lem numerically in 1D in such a way that the edges are represented exactly.

Determine the errors obtained theoretically and numerically.
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7.8 Solution of Poisson’s equation in spherical coordinates

In spherical coordinates, used typically for electronic structure calculations of atoms, the

solution of Poissons equation is easy. If the charge density is given in terms of radial

functions times spherical harmonics,

ρ(r′) = ∑
l,m

ρl,m(r
′)Yl,m(r̂

′) (211)

it follows from the addition theorem of spherically harmonics,

1

|r− r′| = 4π∑
l,m

1

2l +1

rl
<

rl+1
>

Y ∗l,m(r̂
′)Yl,m(r̂

′) (212)

that the potential is given by

V (r) = ∑
l,m

4π

2l +1
Yl,m(r̂)

(
1

rl+1

∫ r

0
ρl,m(r

′)r′l+2dr′+ rl

∫ ∞

r
ρl,m(r

′)
1

r′l−1
dr′
)

(213)

This means that the potential can be obtained by simple outward (from 0 to r) and inward

(from ∞ to r) radial integrations.

Exercise [1pt]: Use Gauss’s law of electrostatics to verify Eq. 213 for the case l = 0.
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7.9 Standard non-recursive and recursive interpolation

Standard Interpolation
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7.10 Solution of Poisson’s equation using interpolating scaling func-

tions

The previous method was only applicable if the angular part of the charge density can be

represented by a reasonably small number of spherical harmonics. What is still missing

is a method that can solve Poisson’s equation with free boundary conditions for arbitrary

charge densities. Remember that free boundary conditions are obtained if one solves the

integral equation Eq. 164.

Let us first discuss the construction of interpolating scaling functions. This construction

is closely connected to the question of how to construct a continuous function f (x) if

only its values fi on a finite number of grid points i are known. One way to do this is

by recursive interpolation. Given a data set that is defined on all integer points, we first

interpolate the functional values on all the midpoints by using for instance the functional

values of two integer grid points to the right and of two integer grid points to the left of

the midpoint. Four functional values allow us to construct a third order polynomial and

we can then evaluate it at the half integer midpoint. In the next step, we take this new

data set of functional values at integer and half integer points, which is now twice as large

as the original one, as the input for a new midpoint interpolation procedure. This can be

done recursively ad infinitum until we have a quasi continuous function.

For linear interpolation the formula for the functional value f1/2 in the midlle between
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grid points f0 and f1 reads

f1/2 =
1

2
( f0 + f1) (214)

and for third order interpolation it reads

f1/2 =
1

16
(− f−1 +9 f0 +9 f1− f2) (215)

Let us now show, how this interpolation prescription leads to a set of basis functions.

Denoting by the Kronecker δi− j a data set whose elements are all zero with the exception

of the element at position j, we can write any initial data set as a linear combination

of such Kronecker data sets: fi = ∑ j f jδi− j. Now the whole interpolation procedure is

clearly linear, i.e. the sum of two interpolated values of two separate data sets is equal to

the interpolated value of the sum of these two data sets. This means that we can instead

also take all the Kronecker data sets as the input for separate ad-infinitum interpolation

procedures, to obtain a set of functions φ(x− j). The final interpolated function is then

identical to f (x) = ∑ j f jφ(x− j). If the initial grid values fi were the functional values

of a polynomial of degree less than four, we obviously will have exactly reconstructed

the original function from its values on the grid points. Since any smooth function can

locally be well approximated by a polynomial, these scaling functions φ(x) are good basis

functions.
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The first construction steps of an interpolating scaling function are shown in Figure below

for the case of linear interpolation. The initial Kronecker data set is denoted by the big

dots. The additional data points obtained after the first interpolation step are denoted by

medium size dots and the additional data points obtained after the second step by small

dots.

0 1 2 3-1-2-3

Continuing this process ad infinitum will then result in the function shown in the left panel

of Figure below. If a 7-th order order interpolation scheme is used the function shown in

the right panel of Figure below is obtained.
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Exercise [1pt]: Plot the scaling function obtained by third order interpolation (Eq. 215).
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By construction it is clear, that φ(x) has compact support. If an (m−1)-th order interpola-

tion scheme is used, the support interval of the scaling function is [−(m−1);(m−1)]. The

important property of the interpolating scaling functions is that they vanish at all integer

arguments except at the origin, i.e for all integers i

φ(i) = δi (216)

If we have now the values of a charge density ρi1, i2, i3 on a 3-dimensional grid with grid

spacing h we can very easily construct a continuous charge density ρ(r)

ρ(r) = ∑
i1,i2,i3

ρi1,i2,i3 φ(x/h− i1)φ(y/h− i2)φ(z/h− i3) (217)

For simplicity we will in the following set the grid spacing equal to 1.

Exercise [2pt]: Show that the discrete and continous monopoles and dipoles are identical,

i.e ∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz ρ(r) = ∑

i1,i2,i3

ρi1,i2,i3 (218)

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz z ρ(r) = ∑

i1,i2,i3

i3 ρi1,i2,i3 (219)
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if the relation between ρ(r) and ρi1,i2,i3 is given by Eq. 217. Hint: Derive first
∫

φ(x)dx= 1

from the fact that a constant function can be represented exactly by any scaling function

basis set.

The potential on the grid point j1, j2, j3 of same grid that was used for the charge density

is then given by

Vj1, j2, j3 = ∑
i1,i2,i3

ρi1,i2,i3

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz

φ(x− i1)φ(y− i2)φ(z− i3)√
(x− j1)2 +(y− j2)2 +(z− j3)2

= ∑
i1,i2,i3

ρi1,i2,i3Fi1− j1,i2− j2,i3− j3 (220)

Exercise [1pt]: Using the above definition of the filter F as an integral show that it indeed

depends only on the difference between two indices, e.g. only on i1− j1 and not on i1 and

j1 separately.

Since the above expression for the potential Vj1, j2, j3 is a convolution it can be calculated

with FFT techniques at the cost of N3 log(N3) operations where N3 is the number of grid

points. It remains to calculate the values of the filter Fi1− j1,i2− j2,i3− j3.

Calculating each of the N3 filter elements as a 3-dimensional numerical integral would be

too costly. The calculation becomes however feasible if the 1/r kernel is made separable.

This can be achieved by representing it as a sum of Gaussians. The representation is best
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based on the identity
1

r
=

2√
π

∫ ∞

−∞
e−r2 exp(2s)+sds (221)

Discretizing this integral we obtain

1

r
= ∑

l

wle
−γl r

2
(222)

With 89 well optimized values for wl and γl it turns out that 1/r can be represented in

the interval from 10−9 to 1 with an relative error of 10−8. The 3-dimensional integral in

Eq. 220 becomes then a sum of 89 products of 1-dimensional integrals.
∫

dx

∫
dy

∫
dz

φ(x− i1)φ(y− i2)φ(z− i3)√
(x− j1)2 +(y− j2)2 +(z− j3)2

=

∑
l

wl

∫
dx

∫
dy

∫
dz φ(x− i1)φ(y− i2)φ(z− i3) e−γl((x− j1)2+(y− j2)2+(z− j3)2) =

∑
l

wl

(∫
dx φ(x− i1)e−γl (x− j1)2

)(∫
dy φ(y− i2)e−γl(y− j2)2

)(∫
dz φ(z− i3)e−γl(z− j3)2

)

Using 89 terms in Eq. 222 we have thus to solve just 89N one-dimensional integrals which

can be done extremely rapidly on a modern computer. The main cost are thus the FFT’s

required to calculate the convolution with the kernel Fi1− j1,i2− j2,i3− j3.
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How to do convolutions

We consider a real input data set Xi of N items where i=−N/2, ...,N/2−1 and a real filter

Fi where i =−M/2, ...,M/2−1 We want to calculate the one-dimensional convolution

Yj =
M/2−1

∑
l=−M/2

F∗l X j+l (223)

If the filter is of short length, i.e. if M is small compared to N then it is most efficient

to directly evaluate the sum in equation 223 for each value of j. The numerical effort

is then obviously N ∗M. If M is however equal to N the scaling becomes N2 and the

FFT techniques explained below are more efficient for large N since the scaling becomes

N log(N). It is clear from Eq. 223 that the data set Y is larger than the data set X . If both

the data and the filter have data in the interval i =−N/2, ...,N/2−1, then the output data

are in the range i = −N + 1, ...,N− 2. For simplicity we double the interval length and

consider the interval i =−N, ...,N−1.

To apply the Fourier method we have to calculate the discrete Fourier coefficients xk and

fq of the data sets X and F . The Fourier coefficients are obtained from the doubled data

sets where all the coefficients in the interval i =−N +1, ...,−N/2−1 and in the interval
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N/2, ...,N−1 are set to zero. Denoting 2N by Ñ we obtain

xk =
1

Ñ
∑
ν

exp(
−2πI

Ñ
kν)Xν (224)

fk =
1

Ñ
∑
ν

exp(
−2πI

Ñ
kν)Fν (225)

The original data can then be written in terms of these Fourier coefficients as

Xi = ∑
k

exp(
2πI

Ñ
ki)xk (226)

Fi = ∑
q

exp(
2πI

Ñ
qi) fq (227)

Exercise [1pt]: Verify that plugging in the definition of the Fourier coefficients xk into the

above formula for Xi gives back the original data set Xi

Inserting these expressions into Eq. 223 gives

Yj =
Ñ−1

∑
k=−Ñ

Ñ−1

∑
q=−Ñ

Ñ−1

∑
l=−Ñ

exp(
−2πI

Ñ
ql) fq exp(

2πI

Ñ
k( j+ l))xk (228)
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= ∑
k

exp(
2πI

Ñ
k j)∑

q
∑

l

exp(
−2πI

Ñ
(q− k)l) fqxk (229)

= Ñ ∑
k

exp(
2πI

Ñ
k j)∑

q

δq,k fqxk (230)

= Ñ ∑
k

exp(
2πI

Ñ
k j) fkxk (231)

The previous line shows that the Fourier coefficients of the output data set Y are the prod-

uct of the Fourier coefficients of X and F . So we have to form these products and then

to do another Fourier transform to obtain the data set Y . All the Fourier transformations

can be done using the Fast Fourier transformation (FFT) algorithm at a cost of Ñ log(Ñ)
operations.

In the mathematical literature sums in Fourier transformation formulas typically run from

−N to N or N− 1. In all numerical FFTs indices run from 0 to N− 1. For all the real

data this just implies a shift whereas for data in Fourier space it means that the negative

frequencies are in the second half of the data set as shown below for the case of N=4:

x0,x1,x2,x3,x4,x−3,x−2,x−1
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8 Integration methods

8.1 1-dim Integration Methods

Numerical integration approximates an integral I =
∫ b

a f (x)dx by a finite sum S=∑i f (xi)wi,

where wi are the integration weights and xi the integration points. For best efficiency one

tries to get the highest accuracy with the smallest number of integration points. The effi-

ciency that can be obtained depends on two factors

• The smoothness of the function to be integrated, A function is called smooth if

many continuous derivatives exist.

– the smoothness in the interior of the integration interval

– the behavior of the function at the boundaries of the integration interval, i.e

whether the function and the lowest derivatives vanish. If we artificially ex-

tend the integration interval to [−∞ : ∞] by putting the function outside the

original integration interval [a : b] to 0 this behavior is again described by the

smoothness properties of the function.

• The choice of the integration grid points xi and their weights wi
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As an illustration let us consider the following family of functions shown below

fm(x) = (1− x2

m
)m (232)

that we want to integrate between its two zeros at −√m and
√

m. At the zeros m− 1

derivatives vanish as well.

-0.2
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 0.2

 0.4

 0.6
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 1
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m=6

Integrating the above function between−√m and
√

m is equivalent to integrating over the
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whole real axis the function

fm(x) =

{
(1− x2

m
)m if |x|<√m

0 else
(233)

The above family of functions becomes smoother with increasing m since m− 1 deriva-

tives are continuous everywhere.

The errors with the simplest integration scheme, namely an equally spaced grid with wi =
1 are shown below. It is clearly seen, the smoother the function, the faster this simple

integration scheme converges.

Exercise [1pt]: Guess which function can be integrated from −∞ to ∞ with the smallest

number of equally spaced integration points and wi = 1?
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A simple equally spaced grid is optimal for the integration over the entire space (−∞ to

∞) of an analytic function, or for the integration over the periodicity volume of an analytic

periodic function. Optimality in this context means that exponential convergence can be

obtained, i.e a convergence that is faster than any power with respect to the number of

integration points. The exponential convergence follows from the Paley-Wiener theorem.
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If we consider the Fourier development of a function that is periodic in the interval [0 : 1]

f (x) =
∞

∑
k=−∞

ckeI2πkx (234)

the Paley-Wiener theorem tells us that the Fourier coefficients ck decay exponentially for

large |k| if the function is analytic. Hence we have

1

N

N−1

∑
j=0

f ( j/N) =
∞

∑
k=−∞

ck

1

N

N−1

∑
j=0

eI2πk j/N (235)

Since
1

N

N−1

∑
j=0

eI2πk j/N =

{
1 if k is a multiple of N

0 else
(236)

we get

1

N

N−1

∑
j=0

f ( j/N) = c0 +
∞

∑
m=1

(cmN + c−mN) (237)

Since c0 is the exact value of the integral, the second term is the error term. As asserted

by the Paley-Wiener theorem it decays exponentially.
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Exercise [2pt]: Demonstrate numerically exponential convergence for an analytic peri-

odic function. A possible choice is

∫ 1

0
exp((sin(πx))2)dx = 1.7533876543770903957 (238)

where π = 3.1415926535897932385

For a non-periodic function that is not perfectly smooth the following techniques may be

applied:

• Find a transformation that makes it smoother

• Use weights wi that give better convergence for non-smooth integrands. Typically

the worst non-smooth places are at the upper and lower integration limits. So the

weights should be modified close to the integration limits.

• Use in addition to optimal weights non equally spaced integration points (Gauss

integration)

The first two techniques will be illustrated in the following
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Integration of a radial wave-function after a transformation

There are two problematic regions for the integration of a radial wave-function such as the

1s hydrogen wave-function e−r. Near the origin the wave-functions have a considerable

variation and high derivatives are important. In the tail region we have the problem that

the wave-function extends to rather large radii without much variation. Consequently we

need a transformation that stretches the wave-function near the origin and that compresses

the wave-function in the tail region. The stretching near the origin will introduce small

weights near the origin. As a consequence the quantity to be integrated which is the

product of the transformed function and the weight will tend to zero. A transformation

with this property is

r = f (x) = a exp(αx)−a (239)

The constant a determines how much the function is stretched near the origin. α deter-

mines where the function will start to drop to zero. An integral over a radial function φ
can then be written as

∫ ∞

0
φ(r)dr=

∫ ∞

0
φ( f ( f−1(r)))dr=

∫ ∞

0
φ̃( f−1(r))dr=

∫ ∞

0
φ̃(x)

dr

dx
dx=

∫ ∞

0
φ̃(x)αaexp(αx)dx

(240)

where we have introduced the transformed function φ̃(x) = φ( f (x)) The function φ̃(x)
resulting from φ(r) = exp(−r) by itself and multiplied by the weights is plotted below.
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The integration error resulting from a numerical integration of φ and φ̃ is shown below.
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Exercise [2pt]: Find a transformation such that
∫ ∞
−∞

1
1+x2 dx = π can be calculated with an

error of less than 10−10 with the smallest possible number of integration points.
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Weights for numerical integration of functions on short intervals
Let us assume that we want to integrate a function f (x) and that we know the functional

values fi = f (xi) on several equally spaced values xi = x0 + ih. An integration formula

gives us an approximate value for the integral under the form of a weighted sum of the

functional values fi. ∫ xm

x0

f (x)dx≈ h
m

∑
i=0

fiwi (241)

The basic principle for deriving numerical integration formulas is analogous to the one

used for numerical differentiation. First find a polynomial approximation to the func-

tion and then integrate the polynomial. The lowest order integration formula, called the

trapezoidal rule, is obvious.

∫ x1

x0

f (x)dx =

(
1

2
f0 +

1

2
f1

)
h (242)

It is the area of a linear function that passes through the two points (x0, f0) and (x1, f1) as

shown below
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The integration weights wi for high order integration formulas are again best calculated
by symbolic computation. The following Mathematica program gives the weights for 4
integration points

f[x_]:=Evaluate[InterpolatingPolynomial[{{0,y0},{1,yp1},{2,yp2},{3,yp3}},x]]

tt=Simplify[Integrate[f[x],{x,0,3}]]

The output is shown below

3 (y0 + 3 yp1 + 3 yp2 + yp3)

Out[1]= ----------------------------

8

The error analysis is also analogous to the case of the finite difference formulas. One

considers the Taylor expansion of the function to be integrated. The formula will integrate

exactly the first m+1 terms of the Taylor expansion.

Table 2: Integration coefficients wi (Eq. 241) on short intervals of various order.
O w0 w1 w2 w3 w4 w5 w6 w7

h3 1/2 1/2

h5 3/8 9/8 9/8 3/8

h7 95/288 125/96 125/144 125/144 125/96 95/288

h9 5257/17280 25039/17280 343/640 20923/17280 20923/17280 343/640 25039/17280 5257/17280
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Weights for numerical integration of functions on long intervals
The integration formulas for short intervals were motivated by the assumption that the

function can be represented over the whole interval by a single Taylor expansion. Such an

assumption does generally not hold true for functions found in science and engineering

that extend over a longer interval. Such functions have typically a different behavior in

different regions of the integration interval. Even though a global Taylor expansion is

not adequate, we can assume that Taylor expansions for smaller local subintervals are

accurate. One could thus subdivide a large interval into smaller subintervals and use the

integration formulas derived for short intervals in each subinterval. This would give the

strange result that different points in the middle have different weight, even though all

points are ’equal’. This artifact can be avoided if one uses the polynomial constructed

over several grid points to integrate only the interval between 2 grid points. This is shown

schematically below for the points close to the left integration boundary. To integrate

an interval denoted by a certain color, one uses a polynomial that goes trough the points

below (or above) the bar with the same color.
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The integration weights obtained in this way are listed below

Table 3: The coefficients wi for integration formulas on long intervals of various order.

Listed are only the coefficients for the left integration boundary, the coefficients for the

right boundary are identical, e.g. wm = w0, wm−1 = w1. etc. The integration weights wi in

the middle part are all equal to 1.
O w0 w1 w2 w3 w4 w5 w6 w7

h3 1/2 1 1 1 1 1 1 1

h5 1/3 31/24 5/6 25/24 1 1 1 1

h7 14/45 679/480 139/240 58/45 71/80 163/160 1 1

h9 41/140 6899/4480 3247/15120 226109/120960 1291/3780 159811/120960 2749/3024 24467/24192
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The figure below shows the error for all the 4 sets of integration coefficients of Table 3
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Exercise [2pt]: Derive the integration weights of order h5 in Table 3

Hint: The following Mathematica program

f[x_]:=Evaluate[InterpolatingPolynomial[{{0,y0},{1,yp1},{2,yp2},{3,yp3}},x]]

Simplify[Integrate[f[x],{x,1,2}]]

gives this output

-y0 + 13 yp1 + 13 yp2 - yp3

Out[1]= ---------------------------

24

and the program

f[x_]:=Evaluate[InterpolatingPolynomial[{{0,y0},{1,yp1},{2,yp2},{3,yp3}},x]]

Simplify[Integrate[f[x],{x,0,1}]]

gives this output

9 y0 + 19 yp1 - 5 yp2 + yp3

Out[2]= ---------------------------

24
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8.2 High Dimensional Integration Methods

The one dimensional product formulas can be generalized to higher dimensions. For an

analytic function f we obtain the following integration formulas and error estimates of a

regular grid of nd = N grid points in an d-dim space.

• Simple summation on regular grid

∫ 1

0
dx1

∫ 1

0
dx2...

∫ 1

0
dxd f (~x) =

1

n

n−1

∑
i1=0

1

n

n−1

∑
i2=0

...
1

n

n−1

∑
id=0

f (
i1

n
,

i2

n
, ...

id

n
)+O(

1

N1/d
)

(243)

• Trapezoidal rule

∫ 1

0
dx1

∫ 1

0
dx2...

∫ 1

0
dxd f (~x)=

1

n

n

∑
i1=0

wi1

1

n

n

∑
i2=0

wi2 ...
1

n

n

∑
id=0

wid f (
i1

n
,

i2

n
, ...

id

n
)+O(

1

N2/d
)

(244)

where wi is 1/2 for i = 0,n and 1 for all other values of i.

• Going to ever higher order integration schemes gives an error of O( 1

Nl/d ) where l

is the order of the one dimensional integration scheme. For large d this error will

decrease very slowly.
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So the problem is that these product formulas give very poor convergence with respect to

the total number of grid points in a high dimensional space. Another disadvantage is that

it is very difficult to check convergence. One cannot easily add some more grid points

to check the convergence. Unless one throws away the old result one has to double the

number of grid point in each direction, which will lead to a increase in the total number

of grid points by a factor of 2d .

For these reasons Monte Carlo Integration is frequently recommended for high dimen-

sional integration. Given a sequence of random numbers ~xi the integration formula is

∫ 1

0
dx1

∫ 1

0
dx2...

∫ 1

0
dxd f (~x) =

1

N

N

∑
i=1

f (~xi)+O(
σ√
N
) , (245)

The error term is not a strict error bound, but only an estimate. Its form comes from the

assumption that the integral value has a normal distribution. This is fulfilled according to

the central limit theorem in the limit of large N. The variance σ is given by

σ =
√

< f 2 >−< f >2 (246)

where

< f >=
1

N

N

∑
i=1

f (~xi) < f 2 >=
1

N

N

∑
i=1

f (~xi)
2 (247)
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Exercise [2pt]: Show numerically that the result of a Monte Carlo integration of
∫ 1

0 xdx

has a normal distribution

The Convergence of the Monte Carlo method is too slow to be useful in practice unless

the variance of the function is very small from the beginning. Sometimes it is possible

to reduce the variance of the integration problem by what is called importance sampling.

For importance sampling we need to find a positive function p(x) that has about the same

shape as the function f to be integrated and we normalize it to one (
∫

p(x)dx = 1).

∫ b

a
f (x)dx =

∫ b

a
p(x)

f (x)

p(x)
dx (248)

The new function
f (x)
p(x) has a lower variance and the above integral can be approximated

by
b−a

n

n

∑
j=1

f (y j)

p(y j)
(249)

if the random points y j are now distributed according to the distribution p(x). The standard

random number generators generate a sequence of numbers that are uniformly distributed

in the interval ]0 : 1], i.e. p(x) = 1 in this interval and p(x) = 0 outside this interval. A ran-

dom number sequence that is distributed according to another distribution can frequently

be obtained in the 1-dim case by applying a function y on the output of a standard random
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sequence x j.

y j = y(x j) (250)

y j is then distributed according to 1/|y′|. If one wants a certain distribution one has conse-

quently to find the function y whose reciprocal of the derivative will give this distribution.

The situation is illustrated pictorially below.

∆ y

∆ x x

y(x)

y

p(y) 0 1

Exercise [1pt]: Write a subroutine that gives random numbers that are exponentially dis-

tributed in [0 : ∞]
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Quasi-random integration points

The slow 1/
√

N convergence of the Monte Carlo integration comes from the fluctuations

in the density of the random points used as evaluation points. It would be desirable to

have a more uniform coverage of the integration volume. Such sequences exist and are

called quasi random numbers, or low discrepancy sequences. Below, the first 1000 points

of a random and and of quasi-random sequence are contrasted.
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With quasi-random integration points a convergence rate of
log(N)d

N
can be obtained for

smooth functions, where d is the dimension of the integration space. Conceptually the

simplest low discrepancy sequence is Halton’s sequence. We write the counting numbers

0,1,2,3, ... first in base 2

0,12,102,112,1002,1012,1102, ... (251)

then in base 3

0,13,23,103,113,123,203, ... (252)

then in base 5, and so on through the first d primes. Then each of these representations

of the counting number is reversed to obtain a number in [0 : 1[. So, for example the

sequence coming from the base 2 representation is

0,0.12,0.012,0.112,0.0012,0.1012,0.0112, ... (253)

while the base 3 sequence gives

0,0.13,0.23,0.013.0.113,0.213,0.023, ... (254)

From the construction it is obvious that this sequence fills space in a rather uniform way.

A very powerful sequence that can be used for integration in spaces of dimension of up to

0-231



roughly 30 is Sobols sequence, which is based on very sophisticated mathematics. Even

though it has the same asymptotic convergence rate as Haltons sequence, it has smaller

prefactors in the error term. The first 1000 points of the Sobol sequence were shown on

the previous page. When integrating discontinuous functions, quasi random sequences do

not perform much better than random sequences.

The fact that at present there exists no satisfactory scheme to combine quasi-random se-

quences with importance sampling limits the use of quasi-random sequences in physics.
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9 Monte Carlo methods

A wide variety of simulation methods is denoted by Monte Carlo methods. The only thing

that all these methods have in common is that they are using random numbers in some way.

Random numbers generated by a random number generator on a computer are numbers

that are equally distributed in the interval [0 : 1) and that do not exhibit any recognizable

pattern. Since they are generated by a deterministic procedure, there is of course some

pattern, but since the pattern is well hidden it should not matter in a simulation and the

computer generated random numbers should behave like truly random numbers, i.e. they

should represent a completely unpredictable sequence of numbers. The simplest and most

widely used type of random number generator is the linear congruential operator which

generates a sequence of integers I j where

I j+1 = mod(aI j + c,m) (255)

For properly chosen integers a and c the sequence will have a period of m, where m is

typically the integer word size of the machine, i.e. m = 232. The corresponding real

random number in the interval [0 : 1) is simply obtained as I j/232.

The Metropolis algorithm plays a central role in most Monte Carlo methods We will first

discuss its use for the generation of distributions in classical statistical mechanics.
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High dimensional integrals in physics

High dimensional integrals have to be evaluated in various contexts to treat many-body

systems. One example is the quantum mechanical energy expectation value E of a many-

electron wave function Ψ(r1,r2, ...,rN)

EQM =
∫

dr1,dr2, ...,drNΨ(r1,r2, ...,rN)HΨ(r1,r2, ...,rN)

where H is the many electron Hamiltonian. Another example is the thermodynamic en-

ergy expectation value E of a classical many body system

< E >=

∫
dr1,dr2, ...,drNe

− 1
kBT

E(r1,r2,...,rN )E(r1,r2, ...,rN)∫
dr1,dr2, ...,drNe

− 1
kBT

E(r1,r2,...,rN )

where E(r1,r2, ...,rN) is the potential energy surface, T the temperature and kB the Boltz-

mann constant. For large values of N all the previously discussed methods will fail in

evaluating these integrals. In both cases the integrand is virtually zero in the entire high

dimensional space except in a subvolume that has is vanishingly small. It is extremely

unlikely that either a random or quasi random point will fall in such a subvolume. Hence

a random or quasi random integration will give the wrong value of zero even for a large

number of random integration points. The only class of methods that works under such

circumstances are the Monte Carlo methods.
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9.1 The Metropolis algorithm

The Metropolis algorithm is the standard method to generate random points with a certain

distribution in high dimensional spaces. Since a high dimensional random point corre-

spond generally in physics to the configuration of some system (e.g. all the positions of

a many particle system) we will use the word configuration rather than random point and

we will denote such a configuration by X . The vast majority of the total configurational

space of a many particle system corresponds to unphysical configurations where for in-

stance 2 atoms are very close to each other. This results in extremely high energies that

contribute for instance virtually nothing to a Boltzmann distribution at room temperature.

Importance sampling, i.e. creating distributions that sample only the low energy part of

the configurational space is therefore essential.

The Metropolis algorithm is based on a Markov chain. In a Markov chain the next config-

uration X ′ is obtained from the present configuration X by a certain move that is character-

ized by a transition probability T (X ′← X). The probability PN(X1,X2, ...,XN) of finding

a certain sequence of configurations is therefore given by

PN(X1,X2, ...,XN) = T (XN ← XN−1)...T (X3← X2)T (X2← X1)P1(X1) (256)

where the transition probabilities are normalized

∑
X ′

T (X ′← X) = 1 (257)
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and where P1(X) is an arbitrary distribution. For a truly random (i.e. non-Markovian)

sequence this probability would be given by

PN(X1,X2, ...,XN) = P1(X1)P1(X2)...P1(XN) (258)

For Markov processes it is convenient to introduce the notion of a walker. Instead of say-

ing that one configuration is obtained from another one says that the walker goes from

one configuration to another. The concept of a walker does not in any way modify the

mathematics, it just gives a more intuitive description of a Markov process. The simplest

example of a Markov process is a random walk on a 2-dim square lattice. Each node rep-

resents a configuration. At any step the walker can jump to any of its 4 nearest neighbors,

i.e. T (X ′← X) = 1/4, independently of which site he visited before. The walker behaves

in this example like a drunken sailor who randomly walks from one intersection to the

next in a city.

Let us now introduce an ensemble of walkers together with the function P(X , t) which

gives the probability of finding a walker at configuration X at Markov step t. The probabil-

ity P(X , t+1) is then given by P(X , t) plus the gain ∑X ′ T (X← X ′)P(X ′, t) minus the loss

∑X ′ T (X
′← X)P(X , t). Once equilibrium has been reached P(X , t +1) = P(X , t) = P(X)

and hence

∑
X ′

T (X ′← X)P(X , t) = ∑
X ′

T (X ← X ′)P(X ′, t) (259)
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This equation is satisfied under the conditions of a detailed balance where

T (X ′← X)P(X) = T (X ← X ′)P(X ′) (260)

Like in molecular dynamics there is an equivalence in Monte Carlo methods between en-

semble averages and time averages. Unlike in molecular dynamics there is no continuous

time variable, but the discrete ’time’ variable t that denotes the t-th Markov step takes

over the role of the time variable in molecular dynamics. Our equilibrium distribution

P(X) gives the probability of finding a system in configuration X in an ensemble of sys-

tems. Numerically we rather take time averages by following the movement of one walker.

Since the distribution of walkers P(X , t) tends to P(X) we have

P(X) = lim
T→∞

1

T

T

∑
t=1

P(X , t) (261)

The transition probability in a Markov process consists of two parts: a trial step probability

ωX ′,X and an acceptance probability AX ′,X

T (X ′← X) = ωX ′,X AX ′,X (262)

Since ωX ,X ′ is required to be symmetric, i.e. ωX ′,X = ωX ,X ′ the detailed balance condition
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(Eq. 260) gives
AX ′,X

AX ,X ′
=

P(X)

P(X ′)
(263)

The Metropolis acceptance prescription accepts a trial step if the probability of the new

configuration X ′ is larger than of the old configuration X and accepts it with a probability
P(X ′)
P(X) in the opposite case:

AX ′,X =

{
1 if P(X ′)> P(X)
P(X ′)
P(X) if P(X ′)< P(X)

(264)

That the above prescription satisfies Eq. 263 can easily be seen by considering the two

possible cases. If P(X ′)> P(X)

AX ′,X

AX ,X ′
=

1
P(X ′)
P(X)

=
P(X)

P(X ′)

If P(X ′)< P(X)

AX ′,X

AX ,X ′
=

P(X)
P(X ′)

1
=

P(X)

P(X ′)
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Accepting with a certain probability is done in the following way numerically. A random

number, equally distributed in the interval [0 : 1], is generated by calling a random number

generator. If this random number is less than
P(X ′)
P(X) the step is accepted, otherwise it is

rejected.

The Metropolis algorithm is certainly not the only stochastic process that leads to a certain

probability distribution, but it is presumably the simplest one. Its simplicity is mainly

due to the requirements of the detailed balance and the symmetry of ω. Other, non-

Markovian processes, where the probability for a certain sequence depends on all previous

configurations, have probability expressions that are more complicated than truly random

(Eq. 258) or Markov sequences (Eq. 256). An example of such a sequence is given by the

self-avoiding random walk in which the walker is not allowed to visit a site that has been

visited in the past.

The trial step probabilities ωX ,X ′ do not enter into the Metropolis acceptance criterion

(Eq. 264). Nevertheless they play an important role. First, they have obviously to be

chosen in such a way that any configuration of the system can be reached. Second, their

choice determines how fast the equilibrium distribution P(X) is reached. With a bad

choice, it may well turn out that the equilibrium distribution can not be reached within the

available computer time.

To illustrate the effect of the probabilities ωX ,X ′ on the equilibration rate, let us consider

a simple model system that consists of 11 states i with energies εi = i, i = 0,1, ...,8,9,10.
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We want to generate the Boltzmann equilibrium distribution at temperature T

pi = P(i,∞) = exp(−βεi)/

(

∑
k

exp(−βεk)

)
(265)

where β = 1/(kBT ). We compare the speed with which we converge to this Boltzmann

distribution for two different trial step probability matrices. The first matrix ωi, j connects

only states that are neighbors in energy, i.e. state i is connected to state i+1 and i−1 with

some kind of periodic boundary conditions.
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0 .5 0 0 0 0 0 0 0 0 .5

.5 0 .5 0 0 0 0 0 0 0 0

0 .5 0 .5 0 0 0 0 0 0 0

0 0 .5 0 .5 0 0 0 0 0 0

0 0 0 .5 0 .5 0 0 0 0 0

0 0 0 0 .5 0 .5 0 0 0 0

0 0 0 0 0 .5 0 .5 0 0 0

0 0 0 0 0 0 .5 0 .5 0 0

0 0 0 0 0 0 0 .5 0 .5 0

0 0 0 0 0 0 0 0 .5 0 .5

.5 0 0 0 0 0 0 0 0 .5 0

The second matrix ωi, j allows for transitions between any pair of states:

0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1

.1 0 .1 .1 .1 .1 .1 .1 .1 .1 .1

.1 .1 0 .1 .1 .1 .1 .1 .1 .1 .1

.1 .1 .1 0 .1 .1 .1 .1 .1 .1 .1

.1 .1 .1 .1 0 .1 .1 .1 .1 .1 .1

.1 .1 .1 .1 .1 0 .1 .1 .1 .1 .1

.1 .1 .1 .1 .1 .1 0 .1 .1 .1 .1

.1 .1 .1 .1 .1 .1 .1 0 .1 .1 .1

.1 .1 .1 .1 .1 .1 .1 .1 0 .1 .1

.1 .1 .1 .1 .1 .1 .1 .1 .1 0 .1

.1 .1 .1 .1 .1 .1 .1 .1 .1 .1 0
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The entire transition matrix is given by

Ti, j =





ωi, j if εi < ε j

ωi, j
pi

p j
= ωi, j exp(−β(εi− ε j)) if εi > ε j

1−∑k 6= j Tk, j if i = j

(266)

where Ti, j denotes the probability for a transition from the j-th state to the i-th state.

The transition matrix T describes the dynamics of an ensemble of N systems that undergo

the above defined Markov process. If all the systems are initially in state j, then after

one step there will be NTi, j systems in state i. This relation holds in an average way for

finite N and is exact in the limit of large N. Let us now introduce the vector P(l) which is

obtained by applying the transition matrix T l times on the initial state vector P(0).

P(l) = T lP(0) (267)

This vector is a discrete version of the function P(X , t) used previously and it gives the

distribution of our systems after l Markov steps, i.e there will be NP(i, l) systems in state

i in the sense defined above.

It can be shown that any transition matrix T has the following mathematical properties.

All its eigenvalues λi are real and smaller in magnitude than 1 with the exception of one

eigenvalue, λ0, that is exactly 1. This last property is actually easy to see. By construction
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all the columns of T sum to 1, ∑ j Ti, j = 1, Together with the detailed balance condition

we obtain

∑
j

Ti, j p j = ∑
j

Tj,i pi = pi (268)

Hence p is an eigenvector of T with eigenvalue 1.

Our initial state P(0) can be written as a linear combination of the eigenvectors vk of T

P(0) = ∑
k

ckvk (269)

In terms of the vk’s the vector P(l) is given by

P(l) = ∑
k

ckλl
kvk (270)

Since all eigenvalues are smaller in magnitude than 1 except λ0 we obtain

lim
l→∞

P(l) = c0v0 (271)

The rate of convergence to v0 depends however on the eigenvalue that is second largest in

magnitude. If we call this eigenvalue λ1 we have the condition that

λl
1 ≤ p (272)
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in order to get the equilibrium distribution with an error of less than p. As a consequence

the convergence to the final equilibrium distribution will be slow if there is an eigenvalue

λ1 close to 1.

Let us now come back to our example with the two trial matrices ω. The eigenvector v0

of the two transition matrices constructed according to Eq. 266 with the two trial matrices

is of course identical as it should be and represents the Boltzmann distribution. However

λ1 is different in the two cases, approximately .9 for the first trial matrix and .8 for the

second in the case of β = 1. Hence equilibrium is obtained roughly two times faster with

the second transition than with the first one. This is not surprising. The second matrix has

a much higher connectivity that allows transitions between all states. This should speed

up the equilibration process.

Exercise [3pt]: Perform a Markov process with the two transition matrices and verify that

you get faster convergence for the trial matrix with the high connectivity. First verify by

performing a large number of Markov steps about (10000) that you obtain in both cases

the Boltzman distribution at temperature 1. Then start 10000 different (i.e with different

random numbers) Markov processes from the same initial state i = 10 and perform only

20 Markov steps for both trial matrices. Plot the histogram of the distribution for the 2

cases and compare with the Boltzmann distribution.
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The Metropolis algorithm plays a central role in simulations in statistical mechanics,

where one has to calculate quantities such as the energy in a canonical ensemble

< E >canonical=
∑Y e−βE(Y )E(Y )

∑Y e−βE(Y )
(273)

For the case of a continuous system the sum is actually a high-dimensional integral. If

we have configurations X that are distributed according to the Boltzmann distribution the

internal energy is simply given by the sum (or integral) over the N configurations.

< E >canonical=
1

N
∑
X

E(X) (274)

In a simulation, we calculate the above ensemble average again as a ’time’ average

< E >canonical= lim
T→∞

1

T

T

∑
t=1

E(X(t)) (275)

where X(t) is the ’trajectory’ of a walker. In the above sum all the configurations X

for which the first escape steps fail because the new configurations X ′ are rejected, are

included several times in the sum. This slows down the equilibration process. To avoid

summing over the same configuration many times, the trial escape steps should be chosen

such that they have a reasonable chance of success.
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Error estimates for expectation values obtained by the Metropolis

algorithm

The error in a stochastic process decreases like σ√
N

. So one might expect that the error

in a quantity that is calculated with a random distribution generated by a Markov process

is given by the same expression. For instance one might think that the average error of

Eq. 275 is given by
σ√
T

(276)

where

σ =
√
< E2

canonical >−< Ecanonical >2 (277)

and

< E >canonical =
1

T

T

∑
t=1

E(X(t)) (278)

< E2 >canonical =
1

T

T

∑
t=1

E(X(t))2 (279)

This error estimate is much too optimistic. This can easily be seen by considering the case

where the Monte Carlo simulation is trapped in a configuration. In such a case exactly the
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same energy is included many times in the expectation values, but the error clearly does

not decrease as predicted by the above formula. The reason why the above formulas are

not valid is because a Markov process contains correlations that are not present in a truely

random process. The correlation length can be obtained from the auto-correlation function

C(k)

C(k) =
< E(X(t))E(X(t + k))>−< E(X(t))>2

E(X(t))2 >−< E(X(t))>2
(280)

For a truely random process the expectation value < E(X(t))E(X(t+k))> is zero unless

k = 0 and hence C(k) = δk. For a Markov process C(k) is not a delta function, but it

decays exponentially. The correlation time Tc is defined as the time at which C(k = Tc)
has decayed close to zero. In calculating the error bound we have therefore to sum in

Eq. 278 not every term but only every Tc-th term.
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PROJECT: Calculation of the magnetization in the Ising model

The 2d Ising model on a periodic square lattice

In the square lattice periodic Ising model we construct a square lattice of points labelled

by the integers (i, j) where i = 1, ...,L and j = 1, ...,L giving, in total, N = L2 lattice sites

(or spins). At each lattice site sits an Ising spin si, j which takes the value ±1 (either

spin-up or spin-down). This L×L lattice is then repeated periodically (see figure below)

such that sL+1, j = s1, j and si,L+1 = si,1. The energy of the system (for an arbitrary spin

configuration S ) ES is given by

ES =−J
L

∑
i

L

∑
j

(si, jsi+1, j + si, jsi, j+1) (281)

where for our purposes we may set J = 1 as only the ratio E/kBT (which is dimensionless)

is relevant in what follows. The average net magnetisation of the system is given by (where

the sum over S means sum over all possible 2N spin configurations)

〈M〉= ∑
S

exp(−ES/kBT )MS

Z
(282)

where Z = ∑S exp(−ES/kBT ) and the net magnetisation for a given configuration is

MS = ∑
i j

si, j. (283)
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For large L the sum over all configurations rapidly becomes prohibitive. Below a critical

temperature Tc, known as the Curie temperature, the system has a net magnetisation and

is termed ferromagnetic. Above Tc there is no net magnetisation and the system is in a

paramagnetic phase.
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Periodic 6×6 lattice. The spins with white circles represent the spins in the neighbouring

lattices (some of the periodic images are displayed with matching colours).
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Task 1

Given a spin distribution A with energy EA we may pick a site at random and flip the spin

at that site changing the energy to EB. Write down a simple formula for the difference in

the energies of system A and B

∆EA→B = EA−EB. (284)

Hint : A maximum of 5 operations are required to compute ∆EA→B.

The Metropolis Algorithm

If we pick a spin from system A, at random, we can work out ∆EA→B associated with

changing the orientation of the spin to produce system B. According to Boltzman distri-

bution the probability that the transition A→ B takes place goes like

P∼ exp(−∆EA→B/kBT ) (285)

where kB is Boltzman’s constant and T is the temperature.

The Metropolis algorithm, applied to the Ising model described in the previous section,

can be summarised as follows

1. Visit all sites (i, j) consecutively. An optimal strategy is to first sweep over sites

where i+ j is odd and then sites where i+ j is even as spins in each of these sets

are statistically independent.
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2. Calculate ∆E associated with flipping the spin at site (i, j)

3. Calculate the probability, at a given temperature T, of the transition taking place

using P = exp(−∆E/kBT ).

4. Decide if the transition takes place. This decision is made by generating another

random number α:-

• If P exceeds α, the transition is performed.

• If P is less than α, the transition is ignored, and a new one is tried instead

(return to point (1) and repeat MANY times).

Task 2

In the following a Metropolis ‘sweep’ will refer to an update of all spins in the system.

Allow the algorithm to equilibrate (perform around 100000 sweeps) before sampling.

1. Implement the Metropolis algorithm for the periodic square Ising lattice described

in the previous section. To test the algorithm you many use many iterations on a

small, say L = 10 lattice. Start with all of the spins at +1. Try running a low tem-

perature (1.3J) and a high temperature (5J). You should see the magnetisation per

site (m = M/N) oscillate in the ranges ∼ 0.8 to 1.0 and ∼−0.4 to 0.4 respectively.

For the remaining tasks use a lattice with L=50.
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2. After equilibration output to a file (this will allow the rest of the tasks to be com-

pleted without repeating the Metropolis calculation) M and m after each sweep for

temperatures 1.9J, 2.1J, 2.4J and 2.6J. (Hint : The number of sweeps may be very

large > 500000).

• Plot the net magnetisation per site m as a function of the number of Metropolis

sweeps.

• Calculate the average value of M and m from the data output for each temper-

ature.

3. From these calculations estimate the Curie temperature Tc. Hint : Tc ≈ 2.269J.

Close to this temperature the Metropolis algorithm suffers “critical slowing down”

and the number of required sweeps will become VERY large.

4. We may define the autocorrelation as

A( j) = 〈MkMk+ j〉−〈Mk〉〈Mk+ j〉 (286)

• Using the output for M (for temperatures 1.9J, 2.1J, 2.4J and 2.6J) plot A( j).
As A( j) ∝ exp− j/τ find a value of τ for each of these temperatures.

5. The calculation of exponentials in the Metropolis algorithm is computationally ex-

pensive. For the above algorithm devise a way to avoid calculating exponentials in

the inner Metropolis loop. How much faster is this improved algorithm?
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10 Numerical solution of the single particle Schrödinger

equation

The time independent single particle Schrödinger equation is given by

H φi(r) = εiφi(r) (287)

where

H =−1

2
∇2 +V (r) (288)

The eigenvalue εi gives the energy of the i-th state

The Hamiltonian in Eq. 288 is expressed in atomic units. These units are formally ob-

tained by setting h̄ = me = e = κ0 = 1, where κ0 = 4πε0. In this way important atomic

properties have unit values

• charge of an electron = 1 (instead of 1.60 ×10−19 C)

• mass of an electron = 1 (instead of 9.11 ×10−31 kg)

• Angular momentum, h̄ = 1 (instead of 1.05 ×10−34 J s

• Bohr radius of hydrogen atom a0 =
h̄2

mee2 = 1 (instead of .529 ×10−10 m)
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• Ground state energy of hydrogen atom − 1
2

mee4

h̄2 = − 1
2

(instead of − 1
2

4.36 ×10−18

J)

Because many other atomic and molecular properties are related to the above quantities,

they will also have numerical values that are of the order of unity. For instance

• Bond lengths are of the order of the Bohr radius

• The binding energy of a molecule is typically a fraction of the ground state energy

of the hydrogen atom

• The electric dipole moment of a molecule is typically of the order of ea0 = 1 (instead

of 8.45 ×10−30 C m)
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10.1 Discretization of the single particle Schrödinger equation

A computer can not directly do calculations on continuous functions. A continuous func-

tion has therefore to be parametrized by a finite number of discrete parameters. This leads

to a discretization of the equations that the functions have to satisfy. To discretize the

Schrödinger equation one expresses in most cases the eigen-functions as a linear combi-

nation of a set of so-called basis functions Uk(r).

φi(r) = ∑
k

uk,iUk(r) (289)

Popular types of basis functions will soon be discussed. Substituting Eq. 289 into Eq. 287

one obtains

H ∑
k

uk,iUk(r) = εi ∑
k

uk,iUk(r) (290)

Multiplying from the left by Ul(r) and integrating, one obtains

∑
k

uk,i

∫
Ul(r)H Uk(r)dr = εi ∑

k

uk,i

∫
Ul(r)Uk(r)dr (291)

Introducing the Hamiltonian matrix Hl,k

Hl,k =
∫

Ul(r)H Uk(r)dr (292)
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and the overlap matrix Sl,k

Sl,k =
∫

Ul(r)Uk(r)dr (293)

we finally get the following eigenvalue problem

∑
k

Hl,kuk,i = εi ∑
k

Sl,kuk,i (294)

Eq. 294 is the discretized version of the continuous Schrödinger equation Eq. 287. Intro-

ducing a vector~ui that contains the expansion coefficients of the i-th eigenfunction Eq. 294

can be rewritten in matrix vector notation

H~ui = εiS~ui (295)

The matrices H and S are symmetric, S is positive definite. Eq. 295 is a generalized

eigenvalue problem. The difference to a standard eigenvalue problem is simply that the

matrix S is not the unit matrix.

Exercise [3pt]: Prove for the 1-dim case Schrödinger equation that S and H (Eq. 293,292)

are symmetric. Prove that S is positive definite.
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10.2 The variational principle

The variational principle states that the ground state wave function φ0 is the wave-function

φ which minimizes the energy expectation value ε

ε =
∫

φ(r)H φ(r)dr (296)

under the normalization constraint
∫

φ(r)φ(r)dr = 1 (297)

We will prove the discretized version of the variational principle which reads: the ground

state vector ~u0 is the vector ~u which minimizes the discrete energy expectation value ε

ε =~uT H~u (298)

under the normalization constraint

~uT S~u = 1 (299)

Exercise [2pt]: Show that Eq. 298 and Eq. 299 are obtained from Eq. 296 and Eq. 297 by

using Eq. 289.
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Proof : For the generalized symmetric eigenvalue problem with a positive definite S

H~vi = εiS~vi (300)

the eigenvectors vi form a complete set of vectors with the properties that

~vT
i S~v j = δi, j ; ~vT

i H~v j = δi, jεi (301)

Hence we can expand our ground state vector in terms of the eigenvectors

~u0 = ∑
i

ci~vi (302)

The normalization condition then becomes

∑
i

c2
i = 1 (303)

and the expectation value for the energy is given by

ε = ∑
i

εic
2
i (304)

Since the eigenvalues are ordered by increasing value, the minimum is obtained if c0 = 1

with all other coefficients being zero. Hence ε = ε0 and ~u0 =~v0

0-258



10.3 Numerical utilization of the variational principle

Since the ground state wave-function is the one that minimizes the energy ε0, the solution

of Schrödinger’s equation can be considered as a minimization problem of the following

expression which includes the normalization constraint:

1

2

~uT H~u

~uT S~u
(305)

Its gradient g with respect to~u is

~g = H~u− εS~u (306)

where ε = ~uT H~u
~uT S~u

and u is normalized such that ~uT S~u = 1.

Exercise [1pt]: Verify that Eq. 306 is the gradient of Eq. 305

The condition that the gradient vanishes is thus equivalent to the eigenvalue problem.

Alternatively, ε in Eq. 306 can be considered as a Lagrange multiplier that enforces nor-

malization if the unconstrained gradient of 1
2
~uT H~u is used. The Lagrange multiplier point

of view is more general and will be used later on.

It can be shown that the Hessian matrix A for the search of the ground state ε0,u0 is

diagonal in the basis of the eigenvectors of H and that it has the diagonal elements Di

Di = εi− ε0 (307)
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Even though the eigenvalues and eigenvectors are unknown when one starts solving

Schrödinger’s equation, Eq. 307 is useful for the construction of approximate Hessians

for preconditioning purposes.

Generalizations of the variational principle

• The variational principle does not only hold if the wave-function is written as a

linear combination of basis functions (Eq. 289) but also for any nonlinear parame-

terization of a wave-function.

• The variational principle can be generalized to excited states. It can be shown that

the M-th excited state u minimizes the energy expectation values

ε = ∑
l,k

ul Hl,k uk (308)

under the normalization constraint

∑
l,k

ul Sl,k uk = 1 (309)

and the additional constraint that u is orthogonal to all M− 1 lower eigenstates ui,

i = 1, ..,M−1

∑
l,k

ul Sl,k uk,i = 0 (310)
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10.4 Independent particle methods: Density Functional Theory

The hydrogen atom is the only one-electron system found in nature. All other atoms,

molecules and solids are many electron systems and should therefore be described by a

many electron Schrödinger equation. The solution of the many electron Schrödinger equa-

tion is numerically extremely expensive and for this reason the many electron Schrödinger

equation is frequently approximated by so-called independent particle methods. These in-

dependent particle schemes give rise to a set of single particle Schrödinger equations with

a modified potential. Whereas in the simple single particle Schrödinger equation the po-

tential contains only external potentials (such as the potential of the nuclei Ven(r)), the

potential in an independent particle scheme contains an additional part that describes the

influence of the other electrons. The most popular independent particle scheme is density

functional theory. Within this theory this additional potential is called the exchange cor-

relation potential. We will not dwell onto the theoretical background of density functional

theory, but only present the resulting Kohn-Sham equations that need to be solved.

Even though there exists an existence proof for the exchange correlation potential, its

explicit form is unknown. For this reason various approximate forms are used. The most

basic one is called the local density approximation (LDA). The functional used in this

context depends only locally on the density and it has the property that it is exact for a

constant electron density. In a real atom or molecule the density is of course not constant

but varies. In spite of this the LDA approximation is surprisingly accurate. Within the
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local density approximation of density functional theory, the total energy of a system of

N electrons is given by

E =−
N

∑
i=1

1

2

∫
φ∗i (r)∇

2φi(r)dr+
∫

Ven(r)ρ(r)dr+
1

2

∫
ρ(r)ρ(r′)
|r− r′| dr′dr+Exc[ρ(r)]

(311)

where the charge density ρ(r) is the sum over the square of all the occupied Kohn-Sham

orbitals φi

ρ(r) =
N

∑
i=1

φ∗i (r)φi(r) (312)

The first term in Eq. 311 is the kinetic energy of N independent electrons, the second

the interaction of the electrons with the nuclei and potentially other external potentials,

the third the classical electron-electron repulsion and the last the exchange correlation

energy. The Kohn-Sham equations are obtained by minimizing the total energy expression

Eq. 311 (multiplied for convenience by 1/2) under the constraint that the orbitals φi are

orthonormal. Using the Euler Lagrange formalism, it can be shown that the unconstrained

gradient di(r) is

di(r) =−
1

2
∇2φi(r)+Ven(r)φi(r)+

∫
ρ(r′)
|r− r′|dr′ φi(r)+ vxc(ρ(r))φi(r) (313)

0-262



where the exchange correlation potential is defined as

vxc(ρ(r)) =
δExc(ρ(r))

δρ(r)
(314)

Defining a LDA Kohn-Sham Hamiltonian as

HKS =−
1

2
∇2 +Ven(r)+VH(r)+ vxc(ρ(r)) (315)

where VH =
∫ ρ(r′)
|r−r′|dr′ is the Hartree potential, the unconstrained gradient of Eq. 313 can

be re-expressed as

di(r) = HKS φi(r) (316)

It can also be shown that the orthogonality constraints can be imposed by Lagrange mul-

tipliers and the condition that the constrained gradient vanishes becomes

di(r)−
N

∑
j=1

Λi, jφ j(r) = 0 (317)

where

Λi, j =
∫

φ∗j(r)di(r)dr =
∫

φi(r)d
∗
j (r)dr (318)
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and φi is a set of orthonormal wave functions, i.e
∫

φ∗i (r)φ j(r)dr = δi, j . Using Eq. 316,

the condition that the constrained gradient vanishes (Eq.317) can then be written as

HKSφi(r)−
N

∑
j=1

Λi, jφ j(r) = 0 (319)

Exercise [1pt]: Verify that Λ is a symmetric matrix, i.e. that Eq. 318 holds true

The set of orbitals φi that satisfies Eq. 319 is not unique. This comes from the fact that the

LDA energy expression (Eq. 311) is invariant under unitary transformations. This means

that if we have one set of orbitals φi, any other set φ̃i where

φ̃i =
N

∑
j=1

Ui, jφ j (320)

will give the same energy if U is an unitary matrix. The demonstration of the correctness

of this statement follows from the fact that the energy in Eq. 311 depends only on the

charge density ρ and the kinetic energy. Both are invariant under unitary transformations

of the orbitals. Let’s demonstrate this explicitly for the charge density, the demonstration

for the kinetic energy is analogous. Lets call the charge density obtained from the new set
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of orbitals φ̃i ρ̃. Then we have

ρ̃(r) =
N

∑
l=1

φ̃∗l (r)φ̃l(r) (321)

= ∑
i, j

φ∗i (r)φ j(r)∑
l

U∗l,iUl, j (322)

= ∑
i, j

φ∗i (r)φ j(r)∑
l

UH
i,lUl, j (323)

= ∑
i, j

φ∗i (r)φ j(r)δi, j (324)

= ∑
i

φ∗i (r)φi(r) = ρ(r) (325)

Because of this invariance under unitary transformations of the orbitals we may choose

so-called canonical orbitals which give rise to a diagonal matrix Λ. Denoting the diagonal

elements of Λ by εi Eq. 319 becomes

HKSφi(r)− εiφi(r) = 0 (326)

This equation resembles very much the single particle Schrödinger’s equation. As already

pointed out the difference is that the potential of the Kohn-Sham Hamiltonian consists of
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the external potential Ven plus the so-called Hartree potential VH(r) =
∫ ρ(r′)
|r−r′|dr′ and the

exchange correlation potential vxc. The Hartree potential describes the classical repulsion

of charged particles whereas vxc gives all the quantum mechanical corrections to this clas-

sical repulsion. Even though Eq. 319 looks like an eigenvalue problem, it is not a standard

eigenvalue problem. The reason for this is that the Kohn-Sham Hamiltonian depends on

the eigen-orbitals φi, i.e on the solution of the apparent eigenvalue problem. For this rea-

son the energy (Eq. 311) is also not equal to the sum of the Kohn-Sham eigenvalues εi as

it would be for non-interacting electrons.

Since independent particle schemes do not lead to a standard eigenvalue problem, but to

a more complicated self-consistent eigenvalue problem, we will consider the solution of

the Kohn-Sham equations (Eq. 326) as a minimization problem.

Eq. 326 can be discretized in the same way as we did with Eq. 287. In analogy to Eq. 306

we obtain

HKS~ui− εiS~ui = 0 (327)

where HKS is the Kohn-Sham matrix and~ui is the vector that contains the expansion coef-

ficients of the i-th orbital (Eq. 289). Since the Hartree and exchange correlation potential

in HKS depend on the charge density, HKS has to be recalculated in any step of a mini-

mization algorithm.

Up to now we have neglected spin effects. Because of the Pauli principle, the orbitals of

different electrons have to be orthogonal. The orthogonality is automatically assured if
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the electrons have different spins. In the case of the helium atom we have for instance

2 electrons, both of which have the same spatial Kohn-Sham orbital, but which differ in

their spin. This is the simplest example of a closed shell system. A closed shell system

consists of an even number of electrons, and the electrons pairwise share spatial orbitals.

The majority of stable molecules and solids belongs to this type. For a closed shell sys-

tem the charge density of the spin up and spin down electrons is the same and the total

charge density can consequently be obtained by summing only over all the different spatial

orbitals and multiplying by 2:

ρ(r) = 2

N/2

∑
i=1

φ∗i (r)φi(r) (328)

In the same way the kinetic energy is given by

−2

N/2

∑
i=1

1

2

∫
φ∗i (r)∇

2φi(r)dr (329)

In addition there are however also so-called spin polarized systems for which the spatial

part of the spin up orbitals φ
↑
i is not equal to the spatial part of the spin down orbitals φ

↓
i .

This is necessarily the case if the number of electrons is odd. One obtains then a up-spin
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and down-spin charge density

ρ↑(r) =
N↑

∑
i=1

φ
↑∗
i (r)φ↑i (r) ; ρ↓(r) =

N↓

∑
i=1

φ
↓∗
i (r)φ↓i (r) (330)

where N↑ and N↓ is the number of spin-up and down-electrons. The total charge density

ρ is obviously the sum of both, i.e.

ρ(r) = ρ↑(r)+ρ↓(r) (331)

For such a system one has then to use in Eq. 311 a spin polarized version of the exchange

correlation energy

Exc = Exc(ρ
↑(r),ρ↓(r)) (332)

and instead of Eq. 326 one obtains two sets of Kohn-Sham equations for both the spin

up and spin down orbitals. On the spin-up electrons the spin up exchange correlation

potential v
↑
xc(ρ(r)) is acting whereas on the spin-down electrons the spin down counterpart

v
↓
xc(ρ(r)) is acting. The Hartree energy and external potential energy depend also in the

case of a spin polarized system only on the total charge density ρ(r)
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Accuracy of the discretized solution of Schrödinger’s equation

The exact solution of the discretized Schrödinger’s equation Eq. 294 is always an approx-

imate solution of the exact continuous equation Eq. 288. The difference in the eigenvalues

of the discrete and continuous equations is called the discretization error. The discretiza-

tion error decreases with an increasing number of basis functions and tends to zero in the

limit of an infinitely large systematic basis set. A systematic basis set is by definition just a

basis set with this property , namely that the continuous eigenvalue ε can be approximated

with any desired accuracy. All orthogonal basis sets, i.e basis sets for which Si, j = δi, j

are systematic basis sets. Because of the variational principle the discrete eigenvalue is

always bigger than the continuous eigenvalue. This can be easily seen by the following

argument. Let us compare the eigenvalue ε(m) obtained by using a basis set of m basis

functions and of another one, ε(n), obtained by using a second set of n functions. We

assume that n > m and that the first m functions in the basis set containing n functions

are identical to the m basis function of the smaller set. Hence any solution that can be

represented by the smaller basis set can also be represented by the larger basis set. Since

one has more degrees of freedom one can better minimize the wave function represented

by the larger basis set and consequently ε(n) < ε(m). Since ε(n) tends to the continuous

eigenvalue ε if n is infinitely large we have as well that ε < ε(m).
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Let us now assume that we have solved the discretized Schrödinger equation in a finite

basis set. Because of the variational property, the error in the eigenvalue (∆y) is smaller

than the error (∆x) of the wave-function. This can be seen from the figure below

∆ y

∆ x

∆y ∝ (∆x)2 (333)

In other words, it is possible to get fairly good energies with a basis set that is too small

to represent the wave-function with high accuracy.
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10.5 The hydrogen atom

We will consider the slightly more general problem of a single electron orbiting around

a nucleus of charge Z. Obviously the H atom has Z = 1. This is the only atomic or

molecular system found in nature for which an analytic solution is known. Since it allows

us to check any numerical solution against the analytic solution it will serve as a starting

point for numerical work. In addition the fact of having radial symmetry and no electron

electron interactions leads to considerable simplifications. The Hamiltonian is

H =−1

2
∇2− Z

|r| (334)

As is well known from elementary quantum mechanics, the eigenstates are characterized

by the 3 quantum numbers n, l, m and can be written as a product of spherical harmonics

Yl,m(r̂) and radial functions Rn,l(r)

φ(r)n,l,m = Rn,l(r)Yl,m(r̂) (335)

The radial functions satisfy the differential equation

[
−1

2

1

r2

d

dr

(
r2 d

dr

)
+

l(l+1)

2r2
− Z

r

]
Rn,l(r) = En,lRn,l(r) (336)

0-271



Both the angular and radial parts form sets of orthonormal functions
∫

Rn,l(r)Rn′,l(r) r2dr = δn,n′ ;

∫
Y ∗l,m(r̂)Yl,m(r̂)dΩ = δl,l′δm,m′ (337)

where dΩ indicates integration over the surface of the unit sphere. The first radial func-

tions are listed below.

R1,0 = 2Z
3
2 e−Zr (338)

R2,0 = 2

(
Z

2

) 3
2
(

1− Zr

2

)
e−Zr/2

R2,1 =
1√
3

(
Z

2

) 3
2

Zr e−Zr/2 (339)

R3,0 = 2

(
Z

3

) 3
2

(
1− Zr

3
+

2(Zr)2

27

)
e−Zr/3

R3,1 =
4
√

2

3

(
Z

3

) 3
2

Zr

(
1− Zr

6

)
e−Zr/3

R3,2 =
2
√

2

27
√

5

(
Z

3

) 3
2

(Zr)2
e−Zr/3
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The first spherical harmonics are given by

Y0,0 =

√
1

4π

Y1,0 =

√
3

4π
cos(θ)

Y1,−1 = −
√

3

4π
sin(θ)exp(−Iφ)

Y1,1 =

√
3

4π
sin(θ)exp(Iφ)

For the radial differential equation 336 there is also a variational quantity. Using the

Euler-Lagrange formalism it can be shown, that solving Eq. 336 is equivalent to minimiz-

ing the quantity

E =
∫ [

1

2

(
r

d R(r)

dr

)2

+R(r)
l(l+1)

2
R(r)−R(r)ZrR(r)

]
dr (340)

under the appropriate orthogonality constraints.
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Finite elements for the radial hydrogen equation
We will use first order finite elements to discretize the radial wave-function R(r).

Ri(r) = ∑
k

ui(k)Uk(r) (341)

The finite element functions U1(r), U2(r), U3(r), U4(r) attached to the radial grid r1, ...,r4

are shown below

r r r r r1 4 52 3

0

1

They have the property of being one at the central grid point and tend linearly to zero

towards the two neighboring grid points. Beyond the neighboring grid points they are

identically zero. Thus the expansion coefficients u(k) in Eq. 341 are identical to the value

of the function at the grid point rk. Consequently the function R in each interval [rk : rk+1]
is given by

R(r) = u(k)+
u(k+1)−u(k)

rk+1− rk

(r− rk) (342)

Using Eq. 342 rather than Eq. 341 as the basic definition of our radial wave-function is
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actually advantageous. With Eq. 342 the radial wave-function can take on a non-zero

value u(0) at the origin r0 = 0, whereas Eq. 341 would impose a zero value.

In our finite element basis the energy expression of Eq. 340 becomes

E =
1

2

M−1

∑
l=0

∫ rl+1

rl

(
r

u(l+1)−u(l)

rl+1− rl

)2

dr (343)

+
l(l+1)

2

M−1

∑
l=0

∫ rl+1

rl

(
u(l)+

u(l+1)−u(l)

rl+1− rl

(r− rl)

)2

dr

− Z
M−1

∑
l=0

∫ rl+1

rl

(
u(l)+

u(l +1)−u(l)

rl+1− rl

(r− rl)

)2

r dr

The unconstrained gradient d(k) of the above energy expression is obviously given by
∂E

∂u(k) . The constrained gradient of Eq. 294 requires the radial overlap matrix. A convenient

way to obtain the overlap matrix is obtained from the identity.

S(k, l) =
1

2

∂

∂u(k)

∂

∂u(l)

∫
R(r)R(r) r2 dr

=
1

2

∂

∂u(k)

∂

∂u(l)

M−1

∑
m=0

∫ rm+1

rm

(
u(m)+

u(m+1)−u(m)

rm+1− rm

(r− rm)

)2

r2 dr (344)
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In particular, this way of calculating S avoids complications that would arise with the

standard definition because we would like to add ”half” a finite element in the interval

[r0 : r1].
Exercise [2pt]: Show that the calculation of the overlap matrix through Eq. 344 is equiv-

alent to the definition given in Eq. 293

Let us now discuss the choice of the radial grid rk. We know that the radial functions

Rn,l(r) vary much faster close to the origin than far away. Therefore the resolution near

the origin should be higher, i.e the distance between the grid points smaller. There are

many recipes for constructing grids with this property. A widely used grid is the so-called

logarithmic grid

rk = a exp(αk)−a k = 0, ..., M (345)

The constant a determines the distance of r1 form the origin. It should be a small fraction

of the extent of the least extended radial orbital. So let’s put a= 1/1000. The largest radial

grid point should be at a distance where the most extended orbital has decayed to a tiny

value. Let’s put rM = A = 100. How many grid points M we can afford now determines α

α = ln

(
A+a

a

)
/M (346)

At the end of computational interval we impose the boundary conditions R(rM) = 0.
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The condition number of a a free particle
When one tries to solve Schrödinger’s equation by using minimization methods such as

steepest descent or conjugate gradient one realizes that the convergence becomes very

slow if the number of grid points is large. As we have seen before a slow convergence rate

is related to a poor conditioning number. For realistic systems the condition number can

not be calculated analytically, but for a free particle this can be done and the deterioration

of the condition number can consequently be shown. Let us consider a free 1-dim elec-

tron in a periodic box of length L. To represent the Hamiltonian we use first order finite

differences on a grid of spacing h. There shall be m grid points in the box, hence L = mh.

The resulting Hamiltonian is

Hi, j =





1
h2 if j = i

− 1
2h2 if j = i±1

0 else

(347)

This Hamiltonian is identical to the matrix of Eq. 184. The eigenvalues of this Hamilto-

nian are
1

h2
(1− cos(2πk/m)) (348)
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and the associated eigenvectors

uk( j) = exp

(
I2π

k j

m

)
(349)

where k runs from −m/2+1 to m/2

Exercise [1pt]: Verify that the above equations give the eigenvalues and vectors of the

Hamiltonian (347)

The lowest eigenvalue εmin equals 0, the highest eigenvalue εmax equals 2/h2 and the

eigenvalue of the first excited state ε1 equals (1− cos(2π/m)) 1
h2 . If m is large this eigen-

value is approximately given by (2π/m)2 1
h2 . According to Eq. 307 the smallest eigen-

value of the Hessian of a ground state search is then ε1− εmin and the largest eigenvalue

is εmax− εmin. Hence the condition number is given by

κ =
εmax− εmin

ε1− εmin

=
εmax

ε1
=

m2

2π2
(350)

As claimed, the condition number deteriorates as the number of grid points increases.

Preconditioning is therefore necessary.
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Preconditioning the eigenvalue problem

As we have seen solving Schrödinger’s equation is equivalent to a minimization problem.

For an orthogonal basis set, the (constrained) gradient of Eq. 306 reduces to

~g = H~u− ε~u (351)

Since ε is a variational quantity, it converges faster to the true eigenvalue than~u converges

to the true eigenvector (see Eq. 333). In our mathematical analysis we can therefore

assume that ε is an exact eigenvalue. Let us assume that we have at a certain stage of our

iteration the approximative eigenvector ~u and that the true eigenvector is given by ~u+~p.

This gives the equation

H (~u+~p)− ε(~u+~p)≈ 0 (352)

Solving the above equation we get a linear system of equations for ~p

(H− ε)~p =−(H− ε)~u =−~g (353)

Eq. 353 is in principle the equation to be solved for preconditioning purposes. It gives us

the preconditioned gradient ~p from the ordinary gradient ~g. As it will turn out, we should

however better slightly modify Eq. 353 in the numerical context. To analyze the prob-

lem, let us introduce the exact eigenvalues εi and eigenvectors ~ui, satisfying the ordinary

eigenvalue problem

H~ui− εi~ui = 0 (354)
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The gradient ~g as well as the preconditioned gradient ~p can be written as a linear combi-

nation of these eigenvectors

~g = ∑
i

αi~ui ; ~p = ∑
i

βi~ui (355)

Plugging these two expansions into Eq. 353 allows us to solve for the components of ~p

βi =−αi
1

εi− ε
(356)

We see that βi can explode whenever ε is very close to an exact eigenvalue. This can

cause numerical problems if this condition is by chance encountered even though the

eigenvectors are not yet very well converged. There are several possibilities to eliminate

this problem. One possibility is to replace the equation for ~p

~p = (H− εI)−1~g (357)

by

~p = Re
[
(H− (ε+ i γ)I)−1~g

]
(358)

The introduction of this imaginary shift γ modifies Eq. 356 to

βi = αi

εi− ε

(εi− ε)2 + γ2
(359)
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The components that are close in energy to ε can now not any more explode whereas all

the components that are far away from ε are treated essentially in the same way. The

situation is illustrated below.

gamma=0
gamma>0

|
εi

|
εi−1

|
εi+1

|
εi+2

ε

f (ε)

Eq. 358 thus gives rise to powerful preconditioned steepest descent iteration

~u =~u− t~p (360)

where t is of the order of 1
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PROJECT: Calculation of the ionization potential of Helium

Physical background:

The ionization potential is the energy that is required to take away an electron from an

atom or molecule. The ionization potential of helium is consequently the difference in en-

ergy between the neutral helium atom and an He+ atom. The missing electron is supposed

to be very far away with negligible kinetic energy. Hence the missing electron gives no

contribution to the energy. The wave-functions of both the He and He+ atom have pure

s character and in both cases only one spatial orbital has to be calculated. In the case of

He+ we have a spin-polarized system, where only one electron (let’s say with spin up) is

occupying this orbital and in the case of He we have a closed shell where a pair of spin-up

and spin-down electrons is occupying the spatial orbital.

Tasks

In this project we will first develop a program that calculates the 1s orbital of H. By adding

exchange correlation potentials and energies we will then pass from the single particle

Schrödinger equation to the independent particle Kohn-Sham equations. This will allow

us then to treat the 2-electron He atom.
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Part I: The hydrogen atom

• The file http://www.unibas.ch/comphys/comphys/TEACH/WS04/ATOM/subs.f90

contains all the subroutines that are provided for this project. It contains the sub-

routine ”energr” that calculates the energy of Eq. 343 and the gradient ∂E
∂u(k) for a

given input vector u. The routine works for general angular components l and since

we are only interested in s states ”lang” has to be set to 0. The routine ”overlap”

calculates the overlap expectation value O = ~uT S~u and its derivative ∂O
∂u(k) . These

two subroutines where generated quasi automatically by Maple. The routine radgrid

generates the radial grid of Eq. 345.

• Use the exact 1s radial wave-function of Eq. 338 and check whether the gradient of

Eq. 306 is small. It is actually not zero, since the analytical wave-function is not

the exact solution for the case where the wave-function is represented by finite ele-

ments. The gradient should however tend to zero in the limit where we use more and

more grid points (and consequently more and more finite elements). Check whether

this is fulfilled. The energy should actually improve by a factor of 4 whenever the

number of grid points is doubled (why?).

• Try now whether you can find the excact numerical finite element solution. Use

as an input guess for the wave-function the function exp(− 1
2
r2) (do not forget to
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normalize it numerically!). Use the steepest descent method with energy feedback.

You will find that you need a very small step size α to prevent the energy from going

up. Verify that the convergence becomes slower and slower as you add more grid

points.

• Add now preconditioning to your steepest descent minimization. Eq. 358 which

was derived for an orthogonal basis set becomes

~p = Re
[
(H− (ε+ Iγ)S)−1~g

]
(361)

in the case where the overlap matrix S is not the unit matrix I. In order to solve the

resulting system of equations you need now explicitly the tridiagonal Hamiltonian

and overlap matrices. They are calculated by the routines ”crthhp” and ”crtssp”.

The complex system of equations is solved by the routine ”ctridag”. .1 is a good

value for γ. With preconditioning, the number of iterations should be nearly inde-

pendent of the number of grid points and the optimal stepsize t in Eq. 360 should be

close to 1. For the solution of the complex system of equations you need to trans-

form a real array into an complex array and the real part of a complex array into a

real array. The first operation can be done in Fortran by
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complex(16), dimension(n) :: ac

real(8), dimension(n) :: ar

...

do i=1,n

ac(i) = cmplx(ar(i),0.d0)

enddo

and the second by

do i=1,n

ar(i) = real(ac(i))

enddo

Part II: The density functional atomic program

• Calculate the electronic density ρ for the LDA hydrogen wavefunction found previ-

ously. Check that it has the correct normalization. Numerically, the normalization
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integral
∫

R(r)2r2dr has to be replaced by a sum. Use the trapezoidal rule which

approximates this integral in the following way

m

∑
i=0

R(ri)
2r2

i wi (362)

where

wi =





r1−r0
2

if i = 0
rm−rm−1

2
if i = m

ri+1−ri−1

2
else

(363)

rm is the largest radial grid point and r0 equals zero in our context.

• Write routines to calculate the Hartree potential VH using Eq. 213 and the electro-

static energy EH = 1
2

∫
VH(r)ρ(r)dr. To do the integrals for VH and EH numerically

use again the trapezoidal rule with the above defined weights wi. For the systems

considered in this project the charge density is spherically symmetric and we need

only the components associated with Y0,0. Note that ρ0,0 of Eq. 213 is given by
1√
4π

R(r)2. Plot the calculated electrostatic potential. For large distances, it should

coincide with a 1/r potential.

• Add a routine that calculates the exchange correlation energy. The routine

”LSD PADE” calculates the exchange correlation energy density εxc(r) at any point
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r for which the charge density ρ(r) was given as the input. The exchange correlation

energy is obtained by integrating over the exchange correlation energy density times

the density.

Exc =
∫

εxc(ρ(r))ρ(r)dr (364)

In our case ρ(r) = ρ(r) = 1
4π R(r)2. Numerically this integration is obviously re-

placed by a sum. Do the integration again with the trapezoidal rule:

Exc = ∑
i

εxc(i)u(i)
2r2

i wi (365)

• Calculate next the electrostatic and exchange correlation energy for the 1s state of

hydrogen. If LDA density functional theory was exact, the sum of both would be

zero. Unfortunately it is not zero, but it is rather small and the energy according to

Eq. 311 is close to the correct value of -.5. Remember that the hydrogen is a spin

polarized system and so the input value ”ETA” to the subroutine ”LSD PADE”

should be 1.d0.

• Because LDA is not exact for the hydrogen atom, the hydrogen 1s wave-function

is not any more the solution of the LDA Kohn-Sham equations. Obviously this

wave-function should not be very different from the true hydrogen wave-function.
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We will next find the wave-function which is the solution of the Kohn-Sham equa-

tions by a preconditioned steepest descent method. This requires that we add to the

gradient ~dhyd = Hhyd~u of the hydrogen atom the contributions from the Hartree and

exchange correlation potential. The additional gradient ~da is the partial derivative

of the Hartree and exchange correlation energy with respect to the ui’s. When cal-

culating this gradient one must take into account that both the Hartree and exchange

correlation energy depend on the ui’s and one gets the result

~da(i) = (VH(i)+ v↑xc(i)) r2
i wi u(i) (366)

Write a subroutine that adds this term to the gradient Hhyd~u from the hydrogen

hamiltonian Hhyd . The ε in the expression for the constrained gradient (Eq. 306) is

the Kohn-Sham eigenvalue which is not the Kohn Sham total energy of Eq. 311. It

follows from Eq. 318 that the Kohn-Sham eigenvalue ε is related to the hydrogen

eigenvalue εhyd by ε = εhyd + ∑i
~da(i)u(i). To summarize, the final constrained

gradient is given by

g(i) = ∑
j

Hhyd(i, j)u( j)+da(i)− ε ∑
j

S(i, j)u( j) (367)

We see that the additional gradient contribution could also be obtained by adding to

Hhyd the diagonal terms (VH(i)+ v
↑
xc(i))r2

i wi. This has actually to be done for the

matrix that is used for preconditioning.
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• Calculate next with the same program the total energy of He+, i.e. of a hydrogenic

atom with charge Z = 2.

• After having found the LDA energy and wavefunction of the hydrogenic atom we

will turn to the helium atom. Not much changes compared to the hydrogenic atom

except that we have now 2 electrons in a closed shell system and hence the charge

density and kinetic energie have to be calculated according to Eqs. 328 and 329.

The spin polarization ”ETA” is zero and consequently ε
↑
xc(i) = ε

↓
xc(i). Calculate the

energy of the helium atom by the same preconditioned steepest descent method.

The value of ε called ”shtr” in the subroutine ”ctridag” sould never be much higher

in energy than the true eigenvalue. If initial values for ε are very high because the

input guess was bad, ”shtr” should be constrained to a lower value, that is close to

the final eigenvalue.

• Calculate the ionization energy by taking the difference between the LDA total

energy of He and He+.
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11 Global geometry optimization

Structure determination is one of the most fundamental endeavors in physics and chem-

istry. Determining the geometric structure of a solid or molecule requires finding the

atomic positions R1, ...,RM that will give a minimum of the total energy E(R1, ...,RM).
This high dimensional total energy function is also called the Born-Oppenheimer surface.

In general this high dimensional function has many minima.
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In a local geometry relaxation one finds the local minimum that is closest to a starting

point. The minimization methods discussed previously such as the steepest descent or

the conjugate gradient method can be used for such a geometry relaxation. Because the

condition number of the Hessian is frequently bad, the convergence of these methods

can be slow, but nevertheless they will finally find a local minimum. In the case of a

molecule there are low frequency torsional and bending modes in addition to high fre-

quency stretching modes. In the case of a bulk-like structure there are long-wavelength

elastic modes whose frequencies tends to zero in addition to the high-frequency short-

wavelength phonons. As a consequence the condition number is proportional to the largest

diameter of the structure.

Exercise [2pt]: Show that for a linear periodic chain the condition number of the Hessian

is proportional to the length of the chain.

Finding the global minimum of an arbitrary high dimensional function is one of the most

difficult mathematical problems. There exists no algorithm that will find such a global

minimum with certainty within a computing time that grows less than exponentially with

respect to the system size. Systematically exploring the high dimensional space is im-

possible in practice. Covering it with a grid of m points in each direction would require

m3Nat grid points because the dimensionality of the Born-Oppenheimer surface of a sys-

tem of Nat atoms is 3Nat . Another complication is that the number of local minima grows

exponentially with the number of atoms. This can easily be seen for the alkane family,
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CnH2n+2. As one starts building such a polymer by adding consecutive CH2 building

blocks, one can attach the C atom at any of 3 tetragonal bond directions, while saturating

the remaining ones with H. Transforming one configuration into another one requires

rotations about C−C bonds, which involves energetic barriers. Hence each configuration

is a local minimum and there are of the order of 3n such local minima. Ethane (C2H6) is

shown below.

In spite of the mentioned theoretical obstacles there are however algorithms that can find

the global minimum for moderately complex systems within acceptable computing time.
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11.1 Simulated annealing

Simulated annealing is a classical method to find the global minimum of a high-dimensional

function. Even though it is also widely applied outside physics and chemistry we will only

consider its application to the structure determination problem.

Simulated annealing is based on thermodynamics. At a sufficiently low temperature the

system will be in the ground state, i.e. in the global minimum ε0 of the potential energy

surface since all other minima εi have a Boltzmann weight exp(−β(εi− ε0)) that is van-

ishingly small. One might hence hope to obtain the ground state by a Markov process that

tends towards a low temperature Boltzmann distribution. This will not work in practice.

The system will be trapped in some local minimum because at low temperature it can not

overcome the barriers that is has to cross to get into other minima. This behavior will be

found for more or less any choice of the trial matrix ω. The problem can be alleviated

by starting the Markov process at a high temperature and then decreasing the temperature

gradually during the simulation until only the ground state remains occupied. In this way

the system has hopefully still enough energy to cross barriers before being trapped in the

ground state. This gradual decrease of the temperature is the characteristic of simulated

annealing and gave rise to its name. There are two essential ingredients of simulated

annealing that can be realized in many different ways:

• The type of trial moves that are used which in turn determine the matrix ω.
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• The schedule for reducing the temperature

The simplest implementation of simulated annealing is based on molecular dynamics.

This has the advantage that one does not have to come up with a prescription for the trial

moves. The system is propagated using Newton’s equations of motion. Ergodicity ensures

that the thermodynamic Boltzmann distribution is finally reached. Molecular dynamics

based simulated annealing is thus imitating what is happening in nature during a crystal-

lization process. While the system is slowly cooling down the atoms move according to

Newton’s law and find finally the global minimum, which is the perfect crystal structure.

One is thus only left with setting up a prescription for the cooling rate. The simplest

cooling recipe is just to impose an exponential decrease of the temperature. A template

program implementing this simplest simulated annealing method is shown below. Some

values (4.d0, .9999d0 etc) are just examples and other values may be more appropriate in

other contexts. It has to be stressed that there is no guarantee that the global minimum

will be obtained at the end of the run. It is always a matter of chance and changing some

parameters or the initial atomic positions may well lead to different results.
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read initial atomic positions and calculate initial forces

ref_kin=4.d0

1000 continue

ref_kin=ref_kin*.99999

if (ref_kin.le.1.d-3) goto 2000

DO A VELOCITY VERLET MD STEP AND CALCULATE THE KINETIC ENERGY act_kin

if (act_kin.gt.ref_kin) then

reduce velocities by a factor of .99d0

else

increase velocities by a factor of 1.01d0

endif

goto 1000

2000 continue

write final atomic positions
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Exercise [5pt]: Geometric ground state of silicon clusters

Use the simulated annealing algorithm of the previous page to find the 3 energetically

lowest configurations of a cluster of 16 silicon atoms. Take as the starting configuration

for the simulated annealing run a 2*2*4 cube of atoms where the distance between the

atoms in the relevant units (Angstrom) is 2. Describe the interactions of the silicon atoms

with the Bazant force field. A routine bazant lib.f90 where this force field is implemented

can be downloaded from http:/comphys.unibas.ch/teaching.htm. Since this routine uses

periodic boundary conditions you have to use a large simulation cell (e.g. 25*25*25) to

eliminate interactions between the cluster and its periodic images. The size of the cell is

specified in the routine by the array alat. Use the velocity verlet algorithm (Eq. 98) with

a step size h of 5.d-2 for the MD part. The velocities in the first MD step should point in

random directions and be normalized to the desired kinetic energy. Check whether energy

is conserved (up to some oszillations as shown in the Fig. on page 106). Monitor how

many basins of attraction are crossed during the simulated annealing run. Remember that

a basin of attraction is associated to a local minimum and that it consists of the ensemble

of all points that will lead into this local minimum if they are used as starting points for

a steepest descent minimization. Interrupt therefore the MD trajectory every 100 steps

and start a steepest descent geometry optimization (Eq. 27) from the current configuration

along the MD trajectory. Use a maximum step size α of 1.e-2. Use an energy feedback

to reduce the step size in case the energy should increase. While executing the program

write into a file the energy values of the minima of the current basins of attraction found
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by the geometry optimization. Plot this file with gnuplot or some similar software during

program execution to monitor the progress in the search for the global minimum. Save

the configurations of the 10 lowest local minima configurations into files.
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11.2 Basin hopping

A basin is the ’region of attraction’ around a local minimum. All small step size steepest

descent minimizations that are started within the basin associated to one local minimum

will end up in this local minimum. Basin hopping is a Monte Carlo method on a modified

potential energy surface. In an ordinary Monte Carlo simulation the Boltzmann factor

exp(−β(Enew−Ecurr)) of the Metropolis step contains the energies Enew and Ecurr of the

new configuration Xnew and of the current configuration Xcurr. A configuration X in our

context is determined by all the atomic positions R1, R2, ... . In the basin hopping method

Enew and Ecurr have different meanings. They are the energies of the local minimum of

the basins in which Xnew and Xcurr are located. This gives rise to a modified potential that

is constant within one basin.

1-dim potential energy toy surface. High

barriers separate the basins around each

local minimum. In the basin hopping

method all the barriers disappear resulting

in a piecewise constant potential surface.

0-298



The basin hopping has the advantage that barriers separating different minima can be over-

come much more easily during the simulation. In an ordinary Monte Carlo simulation the

Boltzmann factor exp(−β(Enew−Ecurr)) can become very small when one tries to cross

into another basin since the energy differences can be much larger than on the transformed

potential energy surface of the basin hopping method. In the worst case Ecurr is the energy

of a local minimum and Enew is the energy at the top of a barrier between two minima in

an ordinary Monte Carlo method. As a consequence crossing from one basin into another

is a rather rare event in ordinary Monte Carlo simulations. Hence it can take a very long

time until one finally falls into the global minima.

Exactly the same problem is encountered in simulated annealing using MD. At low tem-

perature, the MD trajectory will oscillate back and forth most of the time in the basin

around one local minimum and it will only rarely jump into another basin.

In the basin hopping method the calculation of the transformed potential is performed

on the fly. For each configuration X one performs a local geometry optimization using a

method such as steepest descent. The energy of the local minimum found in this way is

then the energy of the configuration X . The trial steps that bring us from one configura-

tion to the next are in the simplest case just random displacements of the atoms. For small

random displacements one will remain for a long time in the same basin. Since the ener-

gies remain constant, all these moves are accepted in the Metropolis step. On the other

hand, if one chooses very large random displacements the algorithm is similar to a random

search. Such a random search is generally less efficient because it ignores relationships

0-299



between neighboring local minima. If one has already found a good local minimum, it is

likely, that other even better ones are close by. A too large step size gives therefore a low

acceptance probability in the Metropolis step. The step size of the random displacement

is therefore usually adjusted such that half of all new configurations are accepted. The

resulting algorithm is sketched below:

initialize configuration X with energy E ; initialize stepsize

do 1000, istep=1,nstep

generate a new trial configuration:

Xtrial = X + stepsize*random_vector

starting from Xtrial do a local minimzation

to get energy Etrial of the local minimum

calculate Boltzman factor exp(-beta*(Etrial-E)) for Metropolis step

If Xtrial is accepted in the Metropolis step then

X=Xtrial ; E=Etrial

stepsize=stepsize*1.05

else

stepsize=stepsize*.95

endif

1000 continue
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There is one free parameter in the basin hopping method, namely the temperature that is

hidden in the parameter β. This temperature can be lowered successively during a sim-

ulation. Basin hopping can thus be used within a simulated annealing scheme, replacing

MD. Thermodynamics guarantees that at sufficiently low temperature only the basin of

the global minimum will be populated. But again thermodynamics can not tell us how

long it will take until the thermodynamic equilibrium distribution is reached and hence

how long it will take to find the global minimum.
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11.3 Minima hopping

The next question that arises is how one should search for lower local minima that are

close to the current minimum. The answer is the following: One should try to go over

low barriers, because neighboring minima that can be reached by crossing low barriers

are more likely to be low in energy themselves. This relation between the barrier height

and the energy of the local minimum ’behind’ the barrier is explained by the Bell-Evans-

Polanyi (BEP) principle. It assumes that the entire function is made out of quadratic pieces

as shown below. Shifting down the parabola to the right will lower the barrier.
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A simple way to find relatively low barriers is to do molecular dynamics, using as the

potential the function f (x1, ...,xd) to be minimized. With molecular dynamics one solves

numerically Newtons equation of motion. The forces are given by the negative gradient

of f (x1, ...,xd). Hence the sum of the kinetic and potential energy has to remain constant

during such a simulation. If the system has a certain kinetic energy Ekinetic then it simply

can not cross barriers that are higher than Ekinetic. The molecular dynamics simulation

is started in the current local minimum. Initially the kinetic energy will decrease since

the system moves uphill. When it increases again the system has either crossed a barrier

or it is oscillating back towards the initial local minimum. At this point the molecular

dynamics simulation is stopped and the closet local minimum is found by the standard

local minimization techniques such as conjugate gradient. If one is lucky one ends up in

a minimum that is different from the current local minima. By repeating this process one

can explore many low energy local minima.
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Minima hopping flow chart

initialize a current minimum ’Mcurrent’

MDstart

ESCAPE TRIAL PART

start a MD trajectory with kinetic energy Ekin from the current minimum ‘Mcurrent’

in a soft direction. Once potential energy reaches the mdmin-th minimum along the

trajectory stop MD and optimize geometry to find the closest local minimum ‘M’

if (’M’ equals ‘Mcurrent’) then

Ekin = Ekin*beta_same (beta_same > 1)

goto MDstart

else if (’M’ equals a minimum visited previously) then

Ekin = Ekin*beta_old (beta_old > 1)

else if (’M’ equals a new minimum ) then

Ekin = Ekin*beta_new (beta_new < 1)

endif

DOWNWARD PREFERENCE PART

if ( energy(’M’) - energy(’Mcurrent’) < Ediff ) then

accept new minimum: ‘Mcurrent’ = ‘M’

add ‘Mcurrent’ to history list

Ediff = Ediff*alpha_acc (alpha_acc < 1)

else if rejected

Ediff = Ediff*alpha_rej (alpha_rej > 1)

endif

goto MDstart
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11.4 Genetic algorithms

In contrast to the previous methods for finding the global minimum, genetic algorithms

do not have their foundation in thermodynamics. Instead they try to mimic the Darwin-

istic evolution. The principle is the survival of the ’fittest’ and genetic algorithms are

for instance using steps that are called mutations and crossovers. The basic quantity is a

population of individuals that are represented by their genes. Numerically these genes are

binary strings. A mutation consists of a random change of a gene, i.e. of a flip of one or

several of the bits in a gene. It is thus similar to a trial step move in a Monte Carlo method.

What is really new compared to Monte Carlo methods is the concept of gene crossovers.

Given two genes of two individuals, a crossover point is first determined at random and

then the genes are combined as shown below to obtain a child.

1 0 0 1 1 1 1 0 0 1 ’mother gene’

1 0 1 1 0 0 0 1 1 1 ’father gene’

——– ————-

1 0 0 1 0 0 0 1 1 1 ’child gene’

Gene crossing makes only sense if neighboring genes determine common functionalities.

This can be easily seen by going back to biology. If for instance in the example above, the

first 4 genes encode the functionality of ear and the last 6 the functionality of the eye, then

the child has a certain chance having both good ears and a good eyes assuming that the

mother had good ears and the father good eyes. If however the first 5 genes determine the
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ear and the last five the eye then the above crossover after the fourth bit will very likely

result in both ears and eyes that do not work very well.

After performing the operations of mutation and crossovers on a population comes the

final survival step. The fitness of each individual i in a population that may consist of

parents and children generated by both mutations and crossovers is measured by its fitness

fi which would be in a physical problem for instance the negative of the energy of a

configuration. The average fitness of our population < f > of N individuals is given by

< f >=
1

N

N

∑
i=1

fi (368)

The survival rate of an individual is then proportional to fi/ < f >.

Repeating the processes of mutation/crossover and survival gives fitter and fitter popula-

tions and the hope is that finally a population might contain a ’perfect’ individual, which

in the mathematical language would be the global maximum/minimum.

Applying genetic algorithms to structural optimization is problematic for several reasons.

First, it is unnatural to represent atomic positions by short binary strings. A continuous

problem is in this way mapped onto a discrete problem. Second it is not quite clear how to

do the crossover in an efficient way. In order to optimize the structure of clusters, people

devised a crossover process that simply combines the parts of two clusters as shown below.

It is however questionable whether half of a cluster represents a meaningful functional
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unit.
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