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Abstract. We present a new formulation of fast Fourier transformation (FFT) kernels for radix
2, 3, 4, and 5, which have a perfect balance of multiplies and adds. These kernels give higher
performance on machines that have a single multiply–add (mult–add) instruction. We demonstrate
the superiority of this new kernel on IBM and SGI workstations.
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1. Introduction. Until several years ago, additions were faster on most com-
puters than multiplications. Many attempts were therefore made to formulate FFT
kernels with the smallest number of multiplies. Today multiplications are as fast as
adds and most machines can do a multiplication and addition simultaneously. Among
machines that can do this are high-performance workstations from IBM, HP, DEC,
and SGI, as well as vector-supercomputers from Cray, NEC, and Fujitsu. Some ma-
chines achieve this parallelism by a mult–add instruction that is assigned during com-
pilation. In this paper, we will derive FFT kernels that can be formulated uniquely in
terms of mult–adds. The numerical implementation shows that they give considerable
gain in speed.

2. Conventional FFT kernels. An FFT kernel [1, 2] calculates the innermost
part in a transformation, which has the form

Zout(i) =
P−1∑
j=0

Zin(j)Ωj ωij(2.1)

for i = 0, ..., P−1. The radix of the kernel is given by the prime factor P which is 2, 3,
4, or 5 in this paper. Both Ω and ω are complex numbers of modulus one. Ω is called
the twiddling factor [2] and ω is given by ei

2π
P . Efficient evaluation techniques for (2.1)

can be found in [3, 4]. For completeness they will be repeated here. The real part of
the array Zin is denoted by zinr, the imaginary part by zini, and correspondingly for
Zout. The real part and imaginary parts of the twiddling factor Ωj are denoted by
crj and cij , respectively.

Radix 2
r1 = zinr(0)
s1 = zini(0)
r = zinr(1)
s = zini(1)
r2 = r ∗ cr1 − s ∗ ci1

s2 = r ∗ ci1 + s ∗ cr1
zoutr(0) = r2 + r1
zouti(0) = s2 + s1
zoutr(1) = r1 − r2
zouti(1) = s1 − s21
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Radix 4
r1 = zinr(0)
s1 = zini(0)
r = zinr(1)
s = zini(1)
r2 = r ∗ cr1 − s ∗ ci1
s2 = r ∗ ci1 + s ∗ cr1
r = zinr(2)
s = zini(2)
r3 = r ∗ cr2 − s ∗ ci2
s3 = r ∗ ci2 + s ∗ cr2
r = zinr(3)
s = zini(3)
r4 = r ∗ cr3 − s ∗ ci3
s4 = r ∗ ci3 + s ∗ cr3
r = r1 + r3

s = r2 + r4
zoutr(0) = r + s
zoutr(2) = r − s
r = r1 − r3
s = s2 − s4
zoutr(1) = r − s
zoutr(3) = r + s
r = s1 + s3
s = s2 + s4
zouti(0) = r + s
zouti(2) = r − s
r = s1 − s3
s = r2 − r4
zouti(1) = r + s
zouti(3) = r − s

Radix 3
bb = .5 ∗

√
3

r1 = zinr(0)
s1 = zini(0)
r = zinr(1)
s = zini(1)
r2 = r ∗ cr1 − s ∗ ci1
s2 = r ∗ ci1 + s ∗ cr1
r = zinr(2)
s = zini(2)
r3 = r ∗ cr2 − s ∗ ci2
s3 = r ∗ ci2 + s ∗ cr2
r = r2 + r3

s = s2 + s3
zoutr(0) = r + r1
zouti(0) = s + s1
r1 = r1 − .5 ∗ r
s1 = s1 − .5 ∗ s
r2 = bb ∗ (r2−r3)
s2 = bb ∗ (s2−s3)
zoutr(1) = r1 − s2
zouti(1) = s1 + r2
zoutr(2) = r1 + s2
zouti(2) = s1 − r2

Radix 5
cos2 = cos(2 ∗ π /5)
cos4 = cos(4 ∗ π /5)
sin2 = sin(2 ∗ π /5)
sin4 = sin(4 ∗ π /5)
r1 = zinr(0)
s1 = zini(0)
r = zinr(1)
s = zini(1)
r2 = r ∗ cr1 − s ∗ ci1
s2 = r ∗ ci1 + s ∗ cr1
r = zinr(2)
s = zini(2)
r3 = r ∗ cr2 − s ∗ ci2
s3 = r ∗ ci2 + s ∗ cr2
r = zinr(3)
s = zini(3)
r4 = r ∗ cr3 − s ∗ ci3
s4 = r ∗ ci3 + s ∗ cr3
r = zinr(4)

s = zini(4)
r5 = r ∗ cr4 − s ∗ ci4
s5 = r ∗ ci4 + s ∗ cr4
r25 = r2 + r5
r34 = r3 + r4
s25 = s2 − s5
s34 = s3 − s4
zoutr(0) = r1 + r25 + r34
r = cos2 ∗ r25 + cos4 ∗ r34 + r1
s = sin2 ∗ s25 + sin4 ∗ s34
zoutr(1) = r − s
zoutr(4) = r + s
r = cos4 ∗ r25 + cos2 ∗ r34 + r1
s = sin4 ∗ s25 − sin2 ∗ s34
zoutr(2) = r − s
zoutr(3) = r + s
r25 = r2 − r5
r34 = r3 − r4
s25 = s2 + s5
s34 = s3 + s4
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zouti(0) = s1 + s25 + s34
r = cos2 ∗ s25 + cos4 ∗ s34 + s1
s = sin2 ∗ r25 + sin4 ∗ r34
zouti(1) = r + s
zouti(4) = r − s

r = cos4 ∗ s25 + cos2 ∗ s34 + s1
s = sin4 ∗ r25 − sin2 ∗ r34
zouti(2) = r + s
zouti(3) = r − s

3. The new FFT kernels. The first step in all of the above conventional kernels
is the multiplication of the input elements Zin with the twiddling factor. In this part
there is an imbalance of multiplies and adds. For both the real part and imaginary
part one needs two multiplies but only one add. The add capacities are thus sitting
idle, resulting in a reduction of performance. In the following, we will show that
by redefining the twiddling factors one can formulate these kernels in such a way
that one has a perfect balance of multiplies and adds. In the part coming from the
multiplication with the twiddling factor, we get rid of one multiply, giving higher
performance. In the remaining part, we have to introduce some additional multiplies
but only at places where up to now we had an unbalanced add. Even though we have
more operations in this part, the CPU time does not increase since they can be done
simultaneously on the machines we are considering.

Radix 2
ci1 = ci1/cr1
r1 = zinr(0)
s1 = zini(0)
r = zinr(1)
s = zini(1)
r2 = r − s ∗ ci1

s2 = r ∗ ci1 + s
zoutr(0) = r2 ∗ cr1 + r1
zouti(0) = s2 ∗ cr1 + s1
zoutr(1) = − r2 ∗ cr1 + r1
zouti(1) = − s2 ∗ cr1 + s1

Radix 4
ci1 = ci1/cr1
ci2 = ci2/cr2
ci3 = ci3/cr3
cr31 = cr3/cr1
r1 = zinr(0)
s1 = zini(0)
r = zinr(1)
s = zini(1)
r2 = r − s ∗ ci1
s2 = r ∗ ci1 + s
r = zinr(2)
s = zini(2)
r3 = r − s ∗ ci2
s3 = r ∗ ci2 + s
r = zinr(3)
s = zini(3)
r4 = r − s ∗ ci3

s4 = r ∗ ci3 + s
r = r1 + r3 ∗ cr2
s = r2 + r4 ∗ cr31
zoutr(0) = r + s ∗ cr1
zoutr(2) = r − s ∗ cr1
r = r1 − r3 ∗ cr2
s = s2 − s4 ∗ cr31
zoutr(1) = r − s ∗ cr1
zoutr(3) = r + s ∗ cr1
r = s1 + s3 ∗ cr2
s = s2 + s4 ∗ cr31
zouti(0) = r + s ∗ cr1
zouti(2) = r − s ∗ cr1
r = s1 − s3 ∗ cr2
s = r2 − r4 ∗ cr31
zouti(1) = r + s ∗ cr1
zouti(3) = r − s ∗ cr1

Radix 3
crh1 = .5 ∗ cr1
bb = .5 ∗

√
3

crbb1 = cr1 ∗ bb
ci1 = ci1/cr1

ci2 = ci2/cr2
cr21 = cr2/cr1
r1 = zinr(0)
s1 = zini(0)
r = zinr(1)
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s = zini(1)
r2 = r − s ∗ ci1
s2 = r ∗ ci1 + s
r = zinr(2)
s = zini(2)
r3 = r − s ∗ ci2
s3 = r ∗ ci2 + s
r = r2 + r3 ∗ cr21
s = s2 + s3 ∗ cr21
zoutr(0) = r ∗ cr1 + r1

zouti(0) = s ∗ cr1 + s1
r1 = r1 − r ∗ crh1
s1 = s1 − s ∗ crh1
r2 = r2−r3 ∗ cr21
s2 = s2−s3 ∗ cr21
zoutr(1) = r1 − s2 ∗ crbb1
zouti(1) = s1 + r2 ∗ crbb1
zoutr(2) = r1 + s2 ∗ crbb1
zouti(2) = s1 − r2 ∗ crbb1

Radix 5
cos2 = cos(2 ∗ π /5)
cos4 = cos(4 ∗ π /5)
sin2 = sin(2 ∗ π /5)
sin4 = sin(4 ∗ π /5)
ci1 = ci1/cr1
ci2 = ci2/cr2
ci3 = ci3/cr3
cr23 = cr2/cr3
cos24 = cos2 ∗ cr3
cos44 = cos4 ∗ cr3
ci4 = ci4/cr4
cr14 = cr1/cr4
cos25 = cos2 ∗ cr4
sin25 = sin2 ∗ cr4
cos45 = cos4 ∗ cr4
sin45 = sin4 ∗ cr4
sin24 = (sin2/sin4) ∗ (cr3/cr4)
sin44 = (sin4/sin2) ∗ (cr3/cr4)
r1 = zinr(1)
s1 = zini(1)
r = zinr(2)
s = zini(2)
r2 = r − s ∗ ci1
s2 = r ∗ ci1 + s
r = zinr(3)
s = zini(3)
r3 = r − s ∗ ci2
s3 = r ∗ ci2 + s
r = zinr(4)
s = zini(4)
r4 = r − s ∗ ci3

s4 = r ∗ ci3 + s
r = zinr(5)
s = zini(5)
r5 = r − s ∗ ci4
s5 = r ∗ ci4 + s
r25 = r2 ∗ cr14 + r5
r34 = r3 ∗ cr23 + r4
s25 = s2 ∗ cr14 − s5
s34 = s3 ∗ cr23 − s4
zoutr(1) = r1 + r25 ∗ cr4 + r34 ∗ cr3
r = r1 + cos25 ∗ r25 + cos44 ∗ r34
s = s25 + sin44 ∗ s34
zoutr(2) = r − sin25 ∗ s
zoutr(5) = r + sin25 ∗ s
r = r1 + cos45 ∗ r25 + cos24 ∗ r34
s = s25 − sin24 ∗ s34
zoutr(3) = r − sin45 ∗ s
zoutr(4) = r + sin45 ∗ s
r25 = r2 ∗ cr14 − r5
r34 = r3 ∗ cr23 − r4
s25 = s2 ∗ cr14 + s5
s34 = s3 ∗ cr23 + s4
zouti(1) = s1 + s25 ∗ cr4 + s34 ∗ cr3
r = s1 + cos25 ∗ s25 + cos44 ∗ s34
s = r25 + sin44 ∗ r34
zouti(2) = r + sin25 ∗ s
zouti(5) = r − sin25 ∗ s
r = s1 + cos45 ∗ s25 + cos24 ∗ s34
s = r25 − sin24 ∗ r34
zouti(3) = r + sin45 ∗ s
zouti(4) = r − sin45 ∗ s

As we see, instead of the sine and cosine of the twiddling angle we need its sine and
tangent ( = sine/cosine). For some radices, in addition we need some other quantities
that are easily calculated such as the ratio of two twiddling cosines. In case one does
multiple or many dimensional FFTs, this additional overhead is completely negligible.
The total number of coefficients related to the trigonometric quantities is, however,
the same in the two sets of kernels, with the exception of the radix 5 kernel where
two additional ones are needed. In all cases, however, the kernels can be implemented
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TABLE 1
Number of CPU cycles needed for one pass through a radix P kernel on a machine with multiply–

add.

Conventional kernel New kernel
Radix 2 8 6
Radix 4 28 22
Radix 3 20 16
Radix 5 48 40

TABLE 2
Comparison of required operations for conventional and new kernels on a machine without

mult–add instruction.

conventional kernel new kernel
mults adds mults adds

Radix 2 4 6 4 6
Radix 4 12 22 14 22
Radix 3 12 16 14 16
Radix 5 32 40 36 40

with 32 floating point registers available on practically all RISC processors. Neglecting
cycles that are needed to load or store data, the number of cycles is reduced as shown
in Table 1.

Whereas in the framework of conventional kernels a radix 8 kernel does give some
additional savings compared with radix 4, this is not true for these new types of
kernels. Within this framework it would also not make sense to use number-theoretic
prime factor FFTs, since the main motivation of these techniques is to get rid of the
twiddling factor. Note also that by precalculating products in the new kernels, one
can nearly come back to the operation counts of conventional kernels as shown in
Table 2. In the unlikely case that one should use a machine that does not have a
multiply–add facility, one does not loose very much.

4. Accuracy of the new kernels. The new kernels consist of repeated trans-
formations of the type

ax+ by → a(x+ (b/a)y).

Instead of adding/subtracting ax and by, one adds/subtracts the scaled quantities
x and (b/a)y. Since both operands are scaled in the same way the error accumulation
properties of the new kernels and old kernels are the same. The slow increase of the
error propagation has been verified for all the kernels, and in Figs. 1 and 2 the error
propagation properties are shown for the case of radix 4 kernels. The fact that the
error propagation of the new set of kernels is slightly better comes from the fact that
no intermediate rounding is performed in a mult–add instruction. The accuracy of a
mult–add instruction therefore exceeds the IEEE standard.

5. Timing results. The two sets of kernels were compared on an IBM
RS6000/590 and an SGI/MIPSR8000 workstation; both have a single mult–add in-
struction. Both also have two floating point units such that two mult–add instructions
can be done within one cycle. In Table 3, the timing results of multiple FFTs are
shown for data sets that fit into cache. For the tests of radix 4, 3, and 5 transforms
of length 64, 81, and 125 were used, respectively. If the cache is large enough, one
can do a large number of multiple FFTs and loop overheads become less important.
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FIG. 1. The relative error of a sequence of forward-backward transforms of data sets containing
up to one million items. The solid line is obtained with the new kernel, the dashed line with the
conventional kernel of the ESSL library. As can be seen the error growth is very similar for both.
The tests were done with eight bytes floating point numbers.
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FIG. 2. The errors in the Fourier spectrum of a sequence that is a superposition of three
frequencies and where the exact result is therefore known. The solid line gives the relative error for
the nonzero weight frequencies, the dashed line the absolute error for the zero weight frequencies.
The results obtained with the new kernel and the ESSL library are indistinguishable on the scale of
the figure.

Since the cache is much larger on the SGI machine, 1024 multiple FFTs could be
done, whereas on the IBM machine only 64 could be fit into cache. Even for many
simultaneous FFTs it is not possible to reach the theoretical limit. On the SGI ma-
chine, for instance, it is not possible to overlap the branching decision adding at least
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TABLE 3
Measured cycles for radix 3, 4, and 5 with different combinations of kernels and machines. In

the header, the number in brackets gives the number of simultaneous FFTs; in the remaining lines
the numbers in brackets give the theoretical limit assuming that the code would run at the peak speed
attainable by the machine.

IBM ESSL (64) IBM new kernel (64) SGI new k. (64) SGI new k. (1024)
Radix 4 14.9 (14) 12.3 (11) 14.1 (11) 13.2 (11)
Radix 3 11.3 (8) 11.1 (8) 10.2 (8)
Radix 5 27.0 (20) 62.0 (20) 62.0 (20)

one cycle per loop iteration. It is also not always possible to overlap all the address
calculations. The comparison with the ESSL library (version 2.2.1) could be done
only for powers of 4, since it does not allow arbitrary powers of 3 and 5. The radix
2 kernel is load/store bound on the SGI machine and was therefore not included in
the test. For radix 5 the SGI compiler was not able to generate an efficient machine
code, resulting in very poor performance.

6. Conclusions. To obtain very high performance on modern computer archi-
tectures, it is very helpful to have an alternating stream of multiply and add instruc-
tions. We have presented FFT kernels that give rise to such an instruction pattern.
Timing results show that these kernels clearly outperform other kernels. A very good
compiler is a necessity to obtain an optimal instruction pattern with a FORTRAN
program.
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