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Electrostatic interactions with dielectric samples in scanning probe microscopies
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Electrostatic interactions between the conducting tip of a scanning probe microscope and a flat conductor coated
with a thin or thick dielectric layer are treated analytically and numerically. Exact and compact approximate
expressions for the capacitance, force, force gradient, electric field profiles, and their effective widths are derived
for a spherical model tip by generalizing known solutions for the conducting sphere and sample problem. These
expressions allow convenient modeling of various measurements involving voltage-biased probes, estimation of
lateral resolution, and prediction of trends as a function of relevant parameters.
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I. INTRODUCTION

Three decades after the invention of the scanning tunnel-
ing microscope (STM),1 diverse scanning probe microscopy
(SPM) techniques have become available for the study of
local chemical and physical surface properties of materials
as well as for manipulating them down to the atomic scale.
Unlike STM, scanning force microscopy2 (SFM) can be
applied to dielectric samples.3 Among various interactions
with the probing tip, the ubiquitous long-range electrostatic
(ES) force is of special importance in SPM techniques
involving voltage-biased conducting tips.4 In electrostatic
force microscopy (EFM)5 the ES force is directly measured,
whereas in Kelvin probe force microscopy (KPFM)6 the
contact potential difference (CPD) is mapped by compensating
an ac signal related to the ES force. Those techniques, as well
as scanning capacitance microscopy (SCM), can be used to
determine the local charging properties of dielectric samples
or surface layers and of semiconductor devices protected by
insulating layers. In particular, two-dimensional electron gas
(2DEG)-based structures can be controlled by voltages applied
to a back electrode (gate) and to top gates confining the 2DEG
laterally. SCM is being extensively used to map lateral doping
profiles,7 but can also detect the quantum capacitance due
to the occupation of confined electronic states, e.g., in the
quantum Hall effect.8 Furthermore, scanning gate microscopy
(SGM) studies, where a biased conducting tip locally perturbs
electron waves or shifts the levels of confined states past the
Fermi energy, have allowed one to map induced variations in
the conductance of quantum constrictions,9 quantum dots,10

and of increasingly complex structures of current interest.
Typical insulator thickness h, tip radius R, and average tip-

sample distance s being of the same order (tens of nanometers)
in such measurements, their lateral resolution has often been
roughly assumed to be ∼R. Although three-dimensional (3D)
numerical solutions of the Poisson equation yield an accurate
description of the tip-induced electrostatic potential for each
particular probe-sample geometry, analytic expressions for the
capacitance, the ES force, and its vertical gradient as functions
of R, s, and h are highly desirable. The same holds also
for the electric field profiles at the top and bottom surfaces
of a uniform dielectric layer in contact with a flat back
electrode. Their widths provide useful estimates of the lateral
resolution of local CPD or surface charge variations, but also
of tip-induced conductance changes in buried semiconductor

devices, at least if the field distribution at the interface is
narrower than the structure lateral dimensions but exceeds the
lateral screening length.

For flat conducting samples, Hudlet et al.11 proposed an ap-
proximate analytic model which is surprisingly accurate, also
for atomically thin insulating layers on metals.12 Dielectric
samples or layers on a conducting back electrode, however,
have been predominately simulated numerically because of
the complexity introduced by partial field penetration (see,
e.g., Refs. 13 and 14 and references therein). In this paper
we obtain exact and novel approximate analytic results for a
spherical model tip facing such a slab. The derived expressions
can be used for further analysis of experiments on the
above-mentioned types of samples. Our formalism can also
be generalized to multilayer slabs.

II. SPHERICAL TIP ATOP A SEMI-INFINITE DIELECTRIC

The classical electric potential between a cylindrically
symmetric conducting probe at potential V facing a dielectric
slab grounded on the bottom can be calculated by means of the
image charges method. In order to obtain an analytic solution,
we model the tip as a sphere of the same radius R as the apex,
see Fig. 1(a). Additional contributions to the capacitance C

and the ES force F from the tip shank and the supporting
sensor can be important for thick dielectric slabs.14 However,
they vary more slowly than the contribution from the tip apex,
so that our approximation captures the main features of ES
properties at tip-sample distances s < R.

The problem of a sphere facing a semi-infinite dielectric
is solved by combining two textbook problems,15 namely a
point charge q at a distance r from the center of the conducting
sphere or at a distance zq from the surface of the dielectric. If
an image charge −qR/r is placed at a distance R2/r from the
sphere center on the same radial line as q, the sphere surface is
an equipotential. In the second problem, the electric potential
outside the dielectric can be obtained by adding the Coulomb
potentials of q and of an image charge −βq at −zq on the
normal to the surface, where

β = ε − ε0

ε + ε0
,

ε and ε0 being the permittivities of the dielectric and of vacuum
(or that of the external medium), respectively. The potential
inside the dielectric is that of single point charge (1 − β)q
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FIG. 1. (a) The probe tip modeled as a conducting sphere of the
same radius R as its apex at a separation s from a dielectric slab of
thickness h. The tip is biased at V while the bottom back electrode is
grounded. Image charges which sum up to the charge on the sphere
are located between z1 and z∞. (b) Positions of image charges below
the surface of the dielectric slab due to a point charge at zn.

at zq if that region were vacuum [or equivalently, of a point
charge (1 + β)q at zq if the whole space were filled with the
dielectric]. Physically, each image charge represents the effect
of the polarization induced at the surface of the sphere or of
the dielectric.

In the combined problem, i.e., sphere against dielectric, a
charge q1 = 4πε0RV located at the center of the sphere (z1 =
R + s) tends to make the surface of the sphere an equipotential
at V . The image −βq1 at −z1 below the dielectric surface,
however, modifies the potential on the sphere surface. A second
charge q2 = βq1R/2z1 is then placed at z2 = z1 − R2/2z1 to
bring the sphere potential towards V , which induces in turn
an image −βq2 at −z2 and so forth. The resulting convergent
series of point charges inside the sphere

qn+1 = βqnR

z1 + zn

(q1 = 4πε0RV ), (1)

zn+1 = z1 − R2

z1 + zn

(z1 = R + s), (2)

together with their corresponding images below the dielectric
surface {−βqn, − zn} satisfy the boundary conditions both
on the sphere and dielectric surfaces. The attractive force on
the sphere can be obtained by summing the Coulomb forces
between the charges inside the sphere and their images inside
the dielectric

F (s,V ) = 1

4πε0

∞∑
n,n′=1

−βqnqn′

|zn + zn′ |2 . (3)

The Green’s function (GF) is

G±
n = 1√

ρ2 + (z − zn)2
− β√

ρ2 + (z ± zn)2
, (4)

where G+
n and G−

n refer to z � 0 and z � 0 regions, respec-
tively. The electric potential �(ρ,z) = 1

4πε0

∑
qnGn and the

electric field E = −1
4πε0

∑
qn∇Gn can be obtained outside the

sphere, above or inside the dielectric slab.
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FIG. 2. (Color online) (a) Lateral profile of the perpendicular field
component just outside the sample and its half-width ρ1/2 (blue dots)
for a conducting sphere of radius R separated by s = 0.1R from
a semi-infinite dielectric. (b) Variation of ρ1/2 /R against s/R and√

s/R (inset); the curves are bounded by ρ1/2 = √
2Rs at small s/R

for β = 1 and ρ1/2 = 0.766(s + R) for β = 0 or at large s/R for all
β.

A. Electric field profile

The z component of the electric field just above the surface
of the sample (z = 0)

Ez = 1 + β

4πε0

∞∑
n=1

qnzn(
ρ2 + z2

n

)3/2 (5)

is especially relevant in AFM and STM experiments because
it polarizes atoms or ions and thus set up microscopic local
fields which influence atomic-scale contrast.16 For tip-sample
separations s where such contrast appears, Ez approaches
a uniform value EN ≡ Ez(ρ = 0) and can be inserted into
atomistic model potential16,17 or ab initio simulations.14

Figure 2(a) shows how Ez gradually weakens as ρ increases.
Its effective width can be characterized by ρ1/2 at which Ez =
EN/2. When β � 0 as well as for s � R, ρ1/2 approaches the
point-charge-like asymptotic linear relation

√
22/3 − 1(R +

s) � 0.766(R + s), as can be seen in Fig. 2(b). Over a perfect
conductor (β = 1), on the other hand, ρ1/2 � √

2Rs for
sufficiently small s/R, as seen in the inset, hence formally
vanishes upon contact because EN then becomes infinite.
Keeping in mind that for commonly used solid dielectrics18

β � 0.6, the behavior highlighted in the inset indicates that
ρ1/2 is considerably smaller than R if s 	 R.

An alternative definition of the half-width directly related
to the capacitance is based on the charge distribution at each
surface. We define an effective area S∗ such that

q∗ =
∫

S

D⊥dS ≡ D∗
⊥S∗,

where q∗ is the total charge on the surface of area S, D⊥ is
the normal component of the electric displacement vector, and
D∗

⊥ ≡ D⊥,max. First we calculate the angular half-width θC

for a conducting sphere separated by s from a semi-infinite
dielectric. We have

q∗ =
∞∑

n=1

qn, S∗ = 2πR2(1 − cos θC),

D∗
⊥ = ε0Ez(0,s) = 1

4π

∞∑
n=1

qn

[
1

(zn − s)2
+ β

(zn + s)2

]
.
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FIG. 3. (Color online) (a) θC and (b) ρP as a function of s/R

for a sphere facing a semi-infinite dielectric. In (b) the curves are
bounded by ρP = √

2(s + R) for β = 0 and ρP � √
2sR for β = 1

and s 	 R.

If β = 0, zn − s = R and θC = π as required for an isolated
sphere. For a perfect conductor (β = 1), on the other hand,
θC � 45◦ at a separation s = R/10, as seen in Fig. 3(a). These
plots can be used to judge whether the approximation of the
tip by a sphere is justified, e.g., θC should at least be smaller
than 90◦ minus the cone half-angle for a conical tip terminated
by a spherical cap.

Over the sample surface we consider instead the polariza-
tion surface charge density P⊥ = (ε − ε0)E−

z (ρ,0),15 where
E−

z (ρ,0) = β−1
4πε0

∑
qnzn/(ρ2 + z2)3/2, thus

q∗ = −β

∞∑
n=1

qn, S∗ = πρ2
P , P ∗

⊥ = −β

2π

∞∑
n=1

qn

z2
n

.

Therefore

ρP =
√√√√2

∞∑
n=1

qn

/ ∞∑
n=1

qn

z2
n

. (6)

For a single point charge at zn, we obtain ρP = √
2zn

(independent of β) which also coincides with the value at
which the parallel component Eρ is maximum. When s  R

or β 	 1, ρP of the sphere approaches the point-charge-like
asymptotic linear behavior, i.e., ρP = √

2(s + R), because
then all charges vanish except q1 at z1 = s + R. As shown
in Fig. 3(b), for a perfect conductor (β = 1) ρP � √

2sR, i.e.,
like ρ1/2, and is significantly smaller than R if s 	 R.

B. Closed-form expressions for capacitance, force, force
gradient, and field

Following Ref. 19, one can write Eq. (1) as a second order
homogeneous difference equation with constant coefficients

1

qn

= 2 cosh α

β

1

qn−1
− 1

β2

1

qn−2
(n � 3)

the solution of which is a linear combination of exp(±nα)
where

cosh α = z1

R
= 1 + s

R
.

Substituting the known expressions for q1 and q2, we obtain

qn = 4πε0RV sinh α

(
βn−1

sinh nα

)
, (7)

zn = R sinh α coth nα (n � 1), (8)

which are a simple generalization of the solution for a
semi-infinite conductor (β = 1)19 for arbitrary β and provide
a convenient expression for the capacitance

C = 1

V

∞∑
n=1

qn = 4πε0R sinh α

∞∑
n=1

βn−1

sinh nα
. (9)

Being the capacitance Csph = 4πε0R of the sphere alone in
vacuum, the constant leading term in C can be ignored because
only variations of C (i.e., of C − Csph) with tip position are of
interest.

Corresponding expression for the attractive electric force
on the tip (F = C ′V 2/2 where C ′ = dC/ds) is given by

F = 2πε0V
2

∞∑
n=2

βn−1

sinh nα
(coth α − n coth nα). (10)

Similarly, the vertical force gradient (dF/ds) is given by

F ′ = 2πε0V
2

R sinh α

∞∑
n=2

βn−1

sinh nα

[
n2

sinh2 nα
− 1

sinh2 α

+ n coth nα(n coth nα − coth α)

]
. (11)

In dynamic EFM or SCM experiments with stiff deflection
sensors F ′ is proportional to the resonance frequency shift
which is used to control the tip-sample separation s.3

Finally, the maximum electric field outside the surface, i.e.,
EN ≡ Ez(ρ = 0, z = 0), reads

EN = V

R

(
1 + β

sinh α

) ∞∑
n=1

βn−1 sinh nα

cosh2 nα
. (12)

1. Limiting values

Except for α = 0 and β = 1, qn decays exponentially
towards zero. For an ideal conductor (β = 1) these expressions
diverge in the limit s → 0 (i.e., α → 0). For dielectrics,
the resulting series for all quantities converge. We obtain
qn(s = 0) = q1β

n−1/n, zn(s = 0) = R/n and

Cmax = −4πε0R

[
ln(1 − β)

β

]
. (13)

Like C, −F and F ′ are monotonically decreasing functions of
s. Their upper bounds attained at s = 0 (α = 0), namely

Fmax = −2

3
πε0V

2

[
ln(1 − β)

β
+ 1

(1 − β)2

]
,

F ′
max = 4πε0V

2

45R

[
ln(1 − β)

β
+ 1

(1 − β)2
+ 21β

(1 − β)4

]
,

are finite if β < 1 as shown in Fig. 4 . The result for F (s = 0)
is stated without proof in Ref. 20. Finally,

EN,max = V

R

1 + β

(1 − β)2
.
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FIG. 4. (Color online) The upper bounds of C, −F , F ′, and EN (in units πε0R, πε0V
2, πε0V

2R−1, and V R−1, respectively) as a
function of β, attained for a conducting sphere touching (s = 0) the semi-infinite dielectric surface. The relevant range for typical values18

βPMMA �βSiO2 = 0.59, βNaCl = 0.71 (circles), βAl2O3 = 0.80, βSi = 0.86, βHfO2 = 0.92, and βLiNbO3 = 0.93–0.98, is shaded.

They all provide useful upper bounds on the corresponding
quantities in case of a realistic probe tip of apex radius
R.14 Their dependences on β are plotted in Fig. 4. As
an example, the limiting values for NaCl (εr = 5.9, β =
0.71) are Cmax/πε0R = 6.98, Fmax/πε0V

2 = −6.77 (i.e.,
Fmax = −0.188 nN/V2 independent of the sphere radius),
F ′

max/πε0V
2R−1 = 188.7 and EN,max/V R−1 = 20.4.

2. Approximate expressions

For s/R < 0.1 many terms in Eqs. (9)–(12) are required
to get a reasonable accuracy. However, the truncation error is
dramatically reduced, as illustrated in Table I, by adapting
a procedure proposed for the sphere-conductor problem.21

Equation (8) shows that zn approaches z∞ = R sinh α as
exp(−2nα), whereas qn decays as βn−1 exp(−nα). If the
charge series is truncated at some qk for which zn>k � z∞,
the remainder can be summed up analytically as a correction
term

q(k)
corr ≡

∞∑
n=k+1

qn � qk+1

1 − βe−α
= q1β

k/(1 − βe−α)

sinh[(k + 1)α]/ sinh α

(14)

lumped at z∞ where we have used qn+1/qn>k � βR/(z1 +
z∞) = βe−α . Moreover, Eq. (14) leads to compact, accurate
analytical expressions. For example,

C(1) − Csph � 2πε0R

[
β/(1 − βe−α)

cosh α

]
, (15)

C(2) − Csph � 2πε0R

[
β

cosh α
+ β2/(1 − βe−α)

4 cosh2 α − 1

]
(16)

approximate Eq. (9) within 5% and 1%, respectively, as seen
in Table I.

Our formulas should be useful in theoretical modeling and
data interpretation. Without the correction, Eq. (16) becomes
2πε0Rβ/(1 + s/R) with an error larger than 33% at s = R/10.

However, it gives the correct asymptotic behavior C − Csph =
2πε0βR2/s for s  R. The prefactor of the approximation
proposed by Hudlet et al.11 for a conducting sample, i.e.,

C − Csph = 2πε0R ln

(
1 + R

s

)
, (17)

was adjusted to match this asymptotic behavior, although their
basic assumption (constant field along field lines perpendicular
to the sphere and sample surfaces) is reasonable only for small
s/R. Nevertheless, Eq. (17) is remarkably accurate at moderate
separations, as demonstrated in the last column of Table I.

III. POINT CHARGE ABOVE A DIELECTRIC SLAB

Next we consider the intermediate problem of a point charge
at (ρ = 0,zn � 0) against a dielectric slab of thickness h;
see Fig. 1(b). When h → ∞, the GF is given by Eq. (4).
For finite h, Gn is, however, modified because the field lines
become perpendicular to the surface of the back electrode.
Appropriate expressions are derived and plots of the resulting
field profiles and of their half-widths are presented below.
Compared to the treatment in Ref. 22, the GF approach is more
convenient, especially for extending to the case of a multilayer
slab for which similar boundary conditions are applied at each
interface.

A. Green’s function

In cylindrical coordinates, the Green’s function (GF) above
and below the slab surface has the form15

G+
n =

∫ ∞

0
(e−k|z−zn| + A1e

−kz)J0(kρ)dk, (18)

G−
n =

∫ ∞

0
(A2e

−kz + A3e
+kz)J0(kρ)dk, (19)

TABLE I. Relative error in calculating C using k point charges in addition to q (k)
corr.

β = 0.71 (NaCl) β = 1 (conductor)

s/R k = 1 2 10 20 1 2 10 20 Eq. (17)

0.1 0.02 0.004 10−7 10−15 0.05 0.01 10−7 10−13 0.02
0.2 0.008 0.001 10−11 <10−16 0.02 0.002 10−8 <10−16 0.02
0.5 0.001 10−5 10−16 <10−16 0.003 10−4 10−14 <10−16 0.01
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J0 being the zero order Bessel function of the first kind. Recall
that ∫ ∞

0
e−k|z−zn|J0(kρ)dk = 1√

ρ2 + (z − zn)2
.

The boundary conditions23

G−
n (ρ, − h) = 0, G+

n (ρ,0) = G−
n (ρ,0),

∂G+
n

∂z

∣∣∣
z=0

= εr

∂G−
n

∂z

∣∣∣
z=0

,

determine the coefficients

A1 = −
(

β + e−2kh

1 + βe−2kh

)
e−kzn , A2 = −e−2khA3,

A3 =
(

1 − β

1 + βe−2kh

)
e−kzn .

Using
1

1 + βe−2kh
=

∞∑
m=0

(−β)me−2mkh

we obtain expressions for GF for any field point (ρ,z) above
the surface

G+
n = 1√

ρ2 + (z − zn)2
− β√

ρ2 + (z + zn)2

− (1 − β2)
∞∑

m=0

(−β)m√
ρ2 + (z + znm)2

(20)

and inside the slab

G−
n = (1 − β)

∞∑
m=0

(−β)m
[

−1√
ρ2 + (z + znm)2

+ 1√
ρ2 + (z + 2h − znm)2

]
, (21)

where

znm = zn + 2(m + 1)h. (22)

Equations (20) and (21) reduce to Eq. (4) for h → ∞,
and the GF of a perfect conductor is obtained for β = 1.
Above a dielectric slab of finite h, however, G+

n includes
additional terms because qn induces, in addition to the first
image −βqn at −zn, an infinite sequence of alternating image
charges −(1 − β2)(−β)mqn at equidistant positions −znm, as
depicted in Fig. 1(b). All those image charges sum up to −qn,
as required.

Inside the slab, G−
n simply corresponds to a series of point

charges (1 − β)(−β)mqn, m � 0, located at znm − 2h and their
mirror images with respect to the back-electrode plane.

B. Electric field profiles

In Fig. 5 we show Ez profiles induced just outside the slab
surface and its interface with the back electrode by a point
charge. With increasing ε, i.e., β, the field above the surface is
enhanced, whereas Ez above the back electrode drops because
of reduced penetration into the dielectric; concomitantly, the
respective half-widths slightly decrease. With increasing h/zn,
ρ1/2 increases monotonically at the back-electrode interface

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

E
z/

E
0

ρ/zn

(a)          slab surface

β=
 (0, 0.1, ..., 1)

.766

.82

0.88

10-2 1 102

ρ 1
/2

/z
n

h/zn

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  1  2  3  4  5

E
z/

E
0

ρ/zn

(b)         back-electrode 

β=(0, 0.1, ..., 1)

.766

1

1.2

1.4

 0  0.5  1

ρ 1
/2

/z
n

h/zn

FIG. 5. (Color online) (a) Ez (in units of E0 = qn/4πε0z
2
n) vs

ρ/zn just outside the sample for a point charge at zn above a dielectric
slab of thickness h = zn for several values of β. Blue points indicate
the half-width ρ1/2 while its variation with h is depicted in the inset;
ρ1/2 = 0.766zn for β = 1. (b) Same as (a) but just outside the coated
back electrode; ρ1/2 = 0.766(h + zn) for β = 0.

and stays only slightly below the linear dependence ρ1/2 =√
22/3 − 1(h + zn) � 0.766(h + zn) obtained when β = 0. On

the sample surface, however, ρ1/2 � 0.766zn, apart from a
small peak rising to 0.88zn around h/zn = 0.7 upon decreasing
β. This behavior can be related to the spreading of field lines
emanating from qn at a given angle which end perpendicular
to the sample surface if β = 1, but perpendicular to the back
electrode otherwise and remain between those for β = 1 and
β = 0 (vacuum instead of dielectric layer).

For a biased sphere centered at z1 = s + R, Fig. 2(a) shows
a more pronounced field enhancement caused by the image
charges qn>1 closer to the surface, and ρ1/2 is somewhat
smaller, except when β → 0, but this limit corresponds to
a missing sample.

IV. SPHERICAL TIP ATOP DIELECTRIC SLAB

In the problem of a biased conducting sphere against a finite
dielectric slab, each qn inside the sphere generates an infinite
series of images on the slab side at positions −znm, and each
of those induces an image closer to the sphere center to bring
it towards an equipotential. The images within the sphere are
recursively given by

Q(m,qn,zn) =
{

qnβR/(z1 + zn), m = −1,

qn(1 − β2)(−β)mR/(z1 + znm), m � 0,

(23)

Z(m,zn) = z1 − R2

z1 + znm

. (24)

When h → ∞ or β = 1, all images vanish except
Q(−1,qn,zn) = qn+1 and Eqs. (1) and (2) are recovered. Now,
to solve the combined sphere-slab problem, one puts the first
point charge q1 = 4πε0RV at the sphere center z1 = R + s.
An infinite series of images Q(m,q1,z1) is then induced
inside the sphere, each of which has in turn infinite images
Q[l,Q(m,q1,z1),Z(m,z1)] and so on. In a numerical treatment,
the infinite series can be truncated as soon as Q becomes
small enough. For relevant parameters, Q is at least 10−16

times smaller than q1 when m > 10; for the same reason
only a limited number of nested sums must be considered.
In Fig. 6 we illustrate the convergence of our procedure for a
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FIG. 6. (Color online) The normalized magnitudes of image
charges vs their positions generated within a conducting sphere of
radius R at a distance s = 0.2R from an NaCl slab (β = 0.71)
of thickness 0.2R. The largest point charge of magnitude one is
at the sphere center (z1 = 1.2R), while no charges appear below
z∞ = 0.66R, z being measured from the slab surface. The first series
of image charges given by Eq. (23) with m = −1 are shown with
circles and define an h-independent upper bound. Further charges
with magnitudes larger than 10−4 are shown in red (positive) and
green (negative).

particular example. The normalized capacitance of the system
is C/πε0R = 7.22 compared to 5.86 and 7.46 in the case of
a semi-infinite slab and a perfect conductor, respectively, as
given by Eq. (9).

A. Capacitance

The capacitance C is obtained from the total charge on the
sphere, namely

CV = q1 +
∞∑

m=−1

Q(m,q1,z1)

+
∞∑

l,m=−1

Q[l,Q(m,q1,z1),Z(m,z1)] + · · · . (25)

A systematic summation of the resulting nested series with
a prescribed precision is possible as described above. The
resulting dependence of the capacitance of the sphere-slab
system as a function of s/R and h/R is depicted in Fig. 7.
First of all, the dashed lines in Fig. 7(a) show that for β = 1,
Eq. (17) agrees within 2% over the whole examined range of
s/R. With increasing s/R, C first becomes almost independent
of β at a value which grows with h/R, then approaches the
capacitance Csph of the isolated sphere as 2πε0R

2/s. Similarly,
at large h/R, C approaches values given by Eq. (9) shown by
dashed lines on the right side in Fig. 7(b). The slow approach
reflects the influence of the additional image charges. Note
that β = 1 and 0 correspond to a biased sphere at respective
separations s and s + h from a perfect conductor.

A smooth interpolation between those two limits is obtained
by replacing s with s + h/εr , where εr = ε/ε0, while keeping
β = 1 in Eq. (9). As shown by dashed lines on the left side in
Fig. 7(b), the resulting approximation is within 1% of the exact
C(s/R,h/R) for h � R/3 if s = R/10. For larger separations
s ∼ R the deviation remains within 1% as long as h � R, see
Fig. 7(c). In view of its remarkable agreement with Eq. (9) for
β = 1, Eq. (17) together with the same substitution provides
an almost as good but simple approximation to the exact C for
small enough h/R. The same combination s + h/εr appears in
the denominator of C in the case of a parallel-plate capacitor
of thickness s + h partially filled with a dielectric slab of
thickness h. However, the proposed approximation remains
valid when the field profiles at the top and bottom surfaces of
the dielectric slab are far from uniform, e.g., if s 	 h < R.
This is evidenced by the Ez(ρ) profiles and by their respective
half-widths as discussed in the following.

B. Electric field profiles

The electric field profiles for a conducting sphere atop
a dielectric slab are shown in Figs. 8 and 9. To compute
Ez(ρ,z) = −∑

qk∂zG
±
k /4πε0, where the GF is given by Eqs.

(20) and (21), we used the same point charges qk which are
kept in evaluating Eq. (25) as shown in Fig. 7. With increasing
β, the field just outside the surface is enhanced, whereas Ez just
above the back electrode drops because of reduced penetration
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FIG. 7. (Color online) Computed normalized capacitance (a) vs s/R for h = R/10 and h = R (inset) and vs h/R for s = R/10 (b) and
s = R (c) of a conducting sphere of radius R separated by s from a dielectric slab of thickness h. In (a) the dashed lines correspond to
Eq. (17). In (b) and (c) the dashed lines on the left correspond to a sphere at an effective separation s + h/εr from the back electrode (see text)
and those on the right to the sphere at separation s from a semi-infinite dielectric.
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FIG. 8. (Color online) Computed field profiles just outside the
sample surface (a) and the back electrode (b) for a conducting sphere
of radius R at a separation s = R/2 from a dielectric slab of thickness
h = R/2. The corresponding half-widths ρ1/2 as functions of h/R are
shown in the insets.

into the dielectric. Concomitantly, the respective half-widths
slightly decrease.

At the sample surface [insets of Figs. 8(a) and 9(a)],
ρ1/2 decreases towards values matching those in Fig. 2(b)
at the same s if h → ∞, but towards a common value
which agrees with that in Fig. 2(b) for β = 1 if h → 0. A
weak maximum consequently appears, around h ∼ R which,
however, is absent if s = 0.1R. If β is close to 1 (undoped or
depleted semiconductor capping layer), ρ1/2 remains close to
the β = 1 value for all h. Thus, like in Fig. 2(b), the half-widths
at the surface are significantly below R, while their spread
increases, if s/R is small. At the back-electrode interface
[insets of Figs. 8(b) and 9(b)], ρ1/2 increases monotonically
with increasing h/R and stays below the line ρ1/2 = 0.766(s +
R + h) obtained when β = 0 for a lumped charge at the
sphere center, as illustrated in the inset of Fig. 5(b), albeit
at the separation s + h from the back electrode. Therefore,
this line is approached only if s + h becomes comparable to
R. In the opposite limit, ρ1/2 � √

2(s + h)R, in accordance
with Fig. 2(b). When h → 0 (missing dielectric layer) the
half-widths on the back electrode and on the surface coincide
with the β = 1 values in Fig. 2(b), namely ρ1/2/R = 1.02 if
s = R/2 and 0.45 if s = R/10. Nevertheless ρ1/2 at the back
electrode considerably exceeds the half-width at the surface in
the common experimental situation when the closest approach
distance s 	 h � R.

V. CONCLUSIONS

In summary, using the method of image charges for a
biased model spherical tip facing a semi-infinite dielectric,
we found a simple generalization of the solution for the
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FIG. 9. (Color online) Same as Fig. 8, but for s = R/10 [cf.
Fig. 2(a)].

sphere-planar conductor problem. Approximate, but accurate
compact formulas were obtained for the capacitance and
related quantities of current interest in scanning gate or
scanning capacitance experiments on doped semiconductors
or 2DEGs capped by insulating layers, besides electrostatic
force microscopy of insulating thin films on metal substrates.
Note that the tip is typically oscillated at or close to a
resonance frequency of the force sensor used to control the
closest approach distance; probed quantities must therefore
be averaged over the tip trajectory.3,14 Green’s functions for
field points above and inside a dielectric slab with finite
thickness grounded at the bottom were used to setup a
systematic numerical solution. For experimentally relevant
situations, where the tip apex radius exceeds the tip-sample
separation s and the slab thickness h, our numerical results
are within 1% of the total capacitance for the sphere-planar
conductor problem at an effective separation s + h/εr . The
computed field profile widths at the slab surface and at the
back-electrode interface indicate that the common assumption
of a tip-surface capacitor in series with a sample capacitor of
effective radius comparable to the tip apex radius R is seldom
justified. We recommend instead to use the above-mentioned
approximation. A worthwhile next step would be to include
screening by nonideal conductors, e.g., buried 2DEGs or
surface layers, e.g., graphene or metallic surface states.
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